aws_sdk_dynamodb/operation/create_table/
builders.rs

1// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
2pub use crate::operation::create_table::_create_table_output::CreateTableOutputBuilder;
3
4pub use crate::operation::create_table::_create_table_input::CreateTableInputBuilder;
5
6impl crate::operation::create_table::builders::CreateTableInputBuilder {
7    /// Sends a request with this input using the given client.
8    pub async fn send_with(
9        self,
10        client: &crate::Client,
11    ) -> ::std::result::Result<
12        crate::operation::create_table::CreateTableOutput,
13        ::aws_smithy_runtime_api::client::result::SdkError<
14            crate::operation::create_table::CreateTableError,
15            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
16        >,
17    > {
18        let mut fluent_builder = client.create_table();
19        fluent_builder.inner = self;
20        fluent_builder.send().await
21    }
22}
23/// Fluent builder constructing a request to `CreateTable`.
24///
25/// <p>The <code>CreateTable</code> operation adds a new table to your account. In an Amazon Web Services account, table names must be unique within each Region. That is, you can have two tables with same name if you create the tables in different Regions.</p>
26/// <p><code>CreateTable</code> is an asynchronous operation. Upon receiving a <code>CreateTable</code> request, DynamoDB immediately returns a response with a <code>TableStatus</code> of <code>CREATING</code>. After the table is created, DynamoDB sets the <code>TableStatus</code> to <code>ACTIVE</code>. You can perform read and write operations only on an <code>ACTIVE</code> table.</p>
27/// <p>You can optionally define secondary indexes on the new table, as part of the <code>CreateTable</code> operation. If you want to create multiple tables with secondary indexes on them, you must create the tables sequentially. Only one table with secondary indexes can be in the <code>CREATING</code> state at any given time.</p>
28/// <p>You can use the <code>DescribeTable</code> action to check the table status.</p>
29#[derive(::std::clone::Clone, ::std::fmt::Debug)]
30pub struct CreateTableFluentBuilder {
31    handle: ::std::sync::Arc<crate::client::Handle>,
32    inner: crate::operation::create_table::builders::CreateTableInputBuilder,
33    config_override: ::std::option::Option<crate::config::Builder>,
34}
35impl
36    crate::client::customize::internal::CustomizableSend<
37        crate::operation::create_table::CreateTableOutput,
38        crate::operation::create_table::CreateTableError,
39    > for CreateTableFluentBuilder
40{
41    fn send(
42        self,
43        config_override: crate::config::Builder,
44    ) -> crate::client::customize::internal::BoxFuture<
45        crate::client::customize::internal::SendResult<
46            crate::operation::create_table::CreateTableOutput,
47            crate::operation::create_table::CreateTableError,
48        >,
49    > {
50        ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
51    }
52}
53impl CreateTableFluentBuilder {
54    /// Creates a new `CreateTableFluentBuilder`.
55    pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
56        Self {
57            handle,
58            inner: ::std::default::Default::default(),
59            config_override: ::std::option::Option::None,
60        }
61    }
62    /// Access the CreateTable as a reference.
63    pub fn as_input(&self) -> &crate::operation::create_table::builders::CreateTableInputBuilder {
64        &self.inner
65    }
66    /// Sends the request and returns the response.
67    ///
68    /// If an error occurs, an `SdkError` will be returned with additional details that
69    /// can be matched against.
70    ///
71    /// By default, any retryable failures will be retried twice. Retry behavior
72    /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
73    /// set when configuring the client.
74    pub async fn send(
75        self,
76    ) -> ::std::result::Result<
77        crate::operation::create_table::CreateTableOutput,
78        ::aws_smithy_runtime_api::client::result::SdkError<
79            crate::operation::create_table::CreateTableError,
80            ::aws_smithy_runtime_api::client::orchestrator::HttpResponse,
81        >,
82    > {
83        let input = self
84            .inner
85            .build()
86            .map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
87        let runtime_plugins = crate::operation::create_table::CreateTable::operation_runtime_plugins(
88            self.handle.runtime_plugins.clone(),
89            &self.handle.conf,
90            self.config_override,
91        );
92        crate::operation::create_table::CreateTable::orchestrate(&runtime_plugins, input).await
93    }
94
95    /// Consumes this builder, creating a customizable operation that can be modified before being sent.
96    pub fn customize(
97        self,
98    ) -> crate::client::customize::CustomizableOperation<
99        crate::operation::create_table::CreateTableOutput,
100        crate::operation::create_table::CreateTableError,
101        Self,
102    > {
103        crate::client::customize::CustomizableOperation::new(self)
104    }
105    pub(crate) fn config_override(mut self, config_override: impl ::std::convert::Into<crate::config::Builder>) -> Self {
106        self.set_config_override(::std::option::Option::Some(config_override.into()));
107        self
108    }
109
110    pub(crate) fn set_config_override(&mut self, config_override: ::std::option::Option<crate::config::Builder>) -> &mut Self {
111        self.config_override = config_override;
112        self
113    }
114    ///
115    /// Appends an item to `AttributeDefinitions`.
116    ///
117    /// To override the contents of this collection use [`set_attribute_definitions`](Self::set_attribute_definitions).
118    ///
119    /// <p>An array of attributes that describe the key schema for the table and indexes.</p>
120    pub fn attribute_definitions(mut self, input: crate::types::AttributeDefinition) -> Self {
121        self.inner = self.inner.attribute_definitions(input);
122        self
123    }
124    /// <p>An array of attributes that describe the key schema for the table and indexes.</p>
125    pub fn set_attribute_definitions(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::AttributeDefinition>>) -> Self {
126        self.inner = self.inner.set_attribute_definitions(input);
127        self
128    }
129    /// <p>An array of attributes that describe the key schema for the table and indexes.</p>
130    pub fn get_attribute_definitions(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::AttributeDefinition>> {
131        self.inner.get_attribute_definitions()
132    }
133    /// <p>The name of the table to create. You can also provide the Amazon Resource Name (ARN) of the table in this parameter.</p>
134    pub fn table_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
135        self.inner = self.inner.table_name(input.into());
136        self
137    }
138    /// <p>The name of the table to create. You can also provide the Amazon Resource Name (ARN) of the table in this parameter.</p>
139    pub fn set_table_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
140        self.inner = self.inner.set_table_name(input);
141        self
142    }
143    /// <p>The name of the table to create. You can also provide the Amazon Resource Name (ARN) of the table in this parameter.</p>
144    pub fn get_table_name(&self) -> &::std::option::Option<::std::string::String> {
145        self.inner.get_table_name()
146    }
147    ///
148    /// Appends an item to `KeySchema`.
149    ///
150    /// To override the contents of this collection use [`set_key_schema`](Self::set_key_schema).
151    ///
152    /// <p>Specifies the attributes that make up the primary key for a table or an index. The attributes in <code>KeySchema</code> must also be defined in the <code>AttributeDefinitions</code> array. For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataModel.html">Data Model</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
153    /// <p>Each <code>KeySchemaElement</code> in the array is composed of:</p>
154    /// <ul>
155    /// <li>
156    /// <p><code>AttributeName</code> - The name of this key attribute.</p></li>
157    /// <li>
158    /// <p><code>KeyType</code> - The role that the key attribute will assume:</p>
159    /// <ul>
160    /// <li>
161    /// <p><code>HASH</code> - partition key</p></li>
162    /// <li>
163    /// <p><code>RANGE</code> - sort key</p></li>
164    /// </ul></li>
165    /// </ul><note>
166    /// <p>The partition key of an item is also known as its <i>hash attribute</i>. The term "hash attribute" derives from the DynamoDB usage of an internal hash function to evenly distribute data items across partitions, based on their partition key values.</p>
167    /// <p>The sort key of an item is also known as its <i>range attribute</i>. The term "range attribute" derives from the way DynamoDB stores items with the same partition key physically close together, in sorted order by the sort key value.</p>
168    /// </note>
169    /// <p>For a simple primary key (partition key), you must provide exactly one element with a <code>KeyType</code> of <code>HASH</code>.</p>
170    /// <p>For a composite primary key (partition key and sort key), you must provide exactly two elements, in this order: The first element must have a <code>KeyType</code> of <code>HASH</code>, and the second element must have a <code>KeyType</code> of <code>RANGE</code>.</p>
171    /// <p>For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html#WorkingWithTables.primary.key">Working with Tables</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
172    pub fn key_schema(mut self, input: crate::types::KeySchemaElement) -> Self {
173        self.inner = self.inner.key_schema(input);
174        self
175    }
176    /// <p>Specifies the attributes that make up the primary key for a table or an index. The attributes in <code>KeySchema</code> must also be defined in the <code>AttributeDefinitions</code> array. For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataModel.html">Data Model</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
177    /// <p>Each <code>KeySchemaElement</code> in the array is composed of:</p>
178    /// <ul>
179    /// <li>
180    /// <p><code>AttributeName</code> - The name of this key attribute.</p></li>
181    /// <li>
182    /// <p><code>KeyType</code> - The role that the key attribute will assume:</p>
183    /// <ul>
184    /// <li>
185    /// <p><code>HASH</code> - partition key</p></li>
186    /// <li>
187    /// <p><code>RANGE</code> - sort key</p></li>
188    /// </ul></li>
189    /// </ul><note>
190    /// <p>The partition key of an item is also known as its <i>hash attribute</i>. The term "hash attribute" derives from the DynamoDB usage of an internal hash function to evenly distribute data items across partitions, based on their partition key values.</p>
191    /// <p>The sort key of an item is also known as its <i>range attribute</i>. The term "range attribute" derives from the way DynamoDB stores items with the same partition key physically close together, in sorted order by the sort key value.</p>
192    /// </note>
193    /// <p>For a simple primary key (partition key), you must provide exactly one element with a <code>KeyType</code> of <code>HASH</code>.</p>
194    /// <p>For a composite primary key (partition key and sort key), you must provide exactly two elements, in this order: The first element must have a <code>KeyType</code> of <code>HASH</code>, and the second element must have a <code>KeyType</code> of <code>RANGE</code>.</p>
195    /// <p>For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html#WorkingWithTables.primary.key">Working with Tables</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
196    pub fn set_key_schema(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::KeySchemaElement>>) -> Self {
197        self.inner = self.inner.set_key_schema(input);
198        self
199    }
200    /// <p>Specifies the attributes that make up the primary key for a table or an index. The attributes in <code>KeySchema</code> must also be defined in the <code>AttributeDefinitions</code> array. For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataModel.html">Data Model</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
201    /// <p>Each <code>KeySchemaElement</code> in the array is composed of:</p>
202    /// <ul>
203    /// <li>
204    /// <p><code>AttributeName</code> - The name of this key attribute.</p></li>
205    /// <li>
206    /// <p><code>KeyType</code> - The role that the key attribute will assume:</p>
207    /// <ul>
208    /// <li>
209    /// <p><code>HASH</code> - partition key</p></li>
210    /// <li>
211    /// <p><code>RANGE</code> - sort key</p></li>
212    /// </ul></li>
213    /// </ul><note>
214    /// <p>The partition key of an item is also known as its <i>hash attribute</i>. The term "hash attribute" derives from the DynamoDB usage of an internal hash function to evenly distribute data items across partitions, based on their partition key values.</p>
215    /// <p>The sort key of an item is also known as its <i>range attribute</i>. The term "range attribute" derives from the way DynamoDB stores items with the same partition key physically close together, in sorted order by the sort key value.</p>
216    /// </note>
217    /// <p>For a simple primary key (partition key), you must provide exactly one element with a <code>KeyType</code> of <code>HASH</code>.</p>
218    /// <p>For a composite primary key (partition key and sort key), you must provide exactly two elements, in this order: The first element must have a <code>KeyType</code> of <code>HASH</code>, and the second element must have a <code>KeyType</code> of <code>RANGE</code>.</p>
219    /// <p>For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html#WorkingWithTables.primary.key">Working with Tables</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
220    pub fn get_key_schema(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::KeySchemaElement>> {
221        self.inner.get_key_schema()
222    }
223    ///
224    /// Appends an item to `LocalSecondaryIndexes`.
225    ///
226    /// To override the contents of this collection use [`set_local_secondary_indexes`](Self::set_local_secondary_indexes).
227    ///
228    /// <p>One or more local secondary indexes (the maximum is 5) to be created on the table. Each index is scoped to a given partition key value. There is a 10 GB size limit per partition key value; otherwise, the size of a local secondary index is unconstrained.</p>
229    /// <p>Each local secondary index in the array includes the following:</p>
230    /// <ul>
231    /// <li>
232    /// <p><code>IndexName</code> - The name of the local secondary index. Must be unique only for this table.</p>
233    /// <p></p></li>
234    /// <li>
235    /// <p><code>KeySchema</code> - Specifies the key schema for the local secondary index. The key schema must begin with the same partition key as the table.</p></li>
236    /// <li>
237    /// <p><code>Projection</code> - Specifies attributes that are copied (projected) from the table into the index. These are in addition to the primary key attributes and index key attributes, which are automatically projected. Each attribute specification is composed of:</p>
238    /// <ul>
239    /// <li>
240    /// <p><code>ProjectionType</code> - One of the following:</p>
241    /// <ul>
242    /// <li>
243    /// <p><code>KEYS_ONLY</code> - Only the index and primary keys are projected into the index.</p></li>
244    /// <li>
245    /// <p><code>INCLUDE</code> - Only the specified table attributes are projected into the index. The list of projected attributes is in <code>NonKeyAttributes</code>.</p></li>
246    /// <li>
247    /// <p><code>ALL</code> - All of the table attributes are projected into the index.</p></li>
248    /// </ul></li>
249    /// <li>
250    /// <p><code>NonKeyAttributes</code> - A list of one or more non-key attribute names that are projected into the secondary index. The total count of attributes provided in <code>NonKeyAttributes</code>, summed across all of the secondary indexes, must not exceed 100. If you project the same attribute into two different indexes, this counts as two distinct attributes when determining the total. This limit only applies when you specify the ProjectionType of <code>INCLUDE</code>. You still can specify the ProjectionType of <code>ALL</code> to project all attributes from the source table, even if the table has more than 100 attributes.</p></li>
251    /// </ul></li>
252    /// </ul>
253    pub fn local_secondary_indexes(mut self, input: crate::types::LocalSecondaryIndex) -> Self {
254        self.inner = self.inner.local_secondary_indexes(input);
255        self
256    }
257    /// <p>One or more local secondary indexes (the maximum is 5) to be created on the table. Each index is scoped to a given partition key value. There is a 10 GB size limit per partition key value; otherwise, the size of a local secondary index is unconstrained.</p>
258    /// <p>Each local secondary index in the array includes the following:</p>
259    /// <ul>
260    /// <li>
261    /// <p><code>IndexName</code> - The name of the local secondary index. Must be unique only for this table.</p>
262    /// <p></p></li>
263    /// <li>
264    /// <p><code>KeySchema</code> - Specifies the key schema for the local secondary index. The key schema must begin with the same partition key as the table.</p></li>
265    /// <li>
266    /// <p><code>Projection</code> - Specifies attributes that are copied (projected) from the table into the index. These are in addition to the primary key attributes and index key attributes, which are automatically projected. Each attribute specification is composed of:</p>
267    /// <ul>
268    /// <li>
269    /// <p><code>ProjectionType</code> - One of the following:</p>
270    /// <ul>
271    /// <li>
272    /// <p><code>KEYS_ONLY</code> - Only the index and primary keys are projected into the index.</p></li>
273    /// <li>
274    /// <p><code>INCLUDE</code> - Only the specified table attributes are projected into the index. The list of projected attributes is in <code>NonKeyAttributes</code>.</p></li>
275    /// <li>
276    /// <p><code>ALL</code> - All of the table attributes are projected into the index.</p></li>
277    /// </ul></li>
278    /// <li>
279    /// <p><code>NonKeyAttributes</code> - A list of one or more non-key attribute names that are projected into the secondary index. The total count of attributes provided in <code>NonKeyAttributes</code>, summed across all of the secondary indexes, must not exceed 100. If you project the same attribute into two different indexes, this counts as two distinct attributes when determining the total. This limit only applies when you specify the ProjectionType of <code>INCLUDE</code>. You still can specify the ProjectionType of <code>ALL</code> to project all attributes from the source table, even if the table has more than 100 attributes.</p></li>
280    /// </ul></li>
281    /// </ul>
282    pub fn set_local_secondary_indexes(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::LocalSecondaryIndex>>) -> Self {
283        self.inner = self.inner.set_local_secondary_indexes(input);
284        self
285    }
286    /// <p>One or more local secondary indexes (the maximum is 5) to be created on the table. Each index is scoped to a given partition key value. There is a 10 GB size limit per partition key value; otherwise, the size of a local secondary index is unconstrained.</p>
287    /// <p>Each local secondary index in the array includes the following:</p>
288    /// <ul>
289    /// <li>
290    /// <p><code>IndexName</code> - The name of the local secondary index. Must be unique only for this table.</p>
291    /// <p></p></li>
292    /// <li>
293    /// <p><code>KeySchema</code> - Specifies the key schema for the local secondary index. The key schema must begin with the same partition key as the table.</p></li>
294    /// <li>
295    /// <p><code>Projection</code> - Specifies attributes that are copied (projected) from the table into the index. These are in addition to the primary key attributes and index key attributes, which are automatically projected. Each attribute specification is composed of:</p>
296    /// <ul>
297    /// <li>
298    /// <p><code>ProjectionType</code> - One of the following:</p>
299    /// <ul>
300    /// <li>
301    /// <p><code>KEYS_ONLY</code> - Only the index and primary keys are projected into the index.</p></li>
302    /// <li>
303    /// <p><code>INCLUDE</code> - Only the specified table attributes are projected into the index. The list of projected attributes is in <code>NonKeyAttributes</code>.</p></li>
304    /// <li>
305    /// <p><code>ALL</code> - All of the table attributes are projected into the index.</p></li>
306    /// </ul></li>
307    /// <li>
308    /// <p><code>NonKeyAttributes</code> - A list of one or more non-key attribute names that are projected into the secondary index. The total count of attributes provided in <code>NonKeyAttributes</code>, summed across all of the secondary indexes, must not exceed 100. If you project the same attribute into two different indexes, this counts as two distinct attributes when determining the total. This limit only applies when you specify the ProjectionType of <code>INCLUDE</code>. You still can specify the ProjectionType of <code>ALL</code> to project all attributes from the source table, even if the table has more than 100 attributes.</p></li>
309    /// </ul></li>
310    /// </ul>
311    pub fn get_local_secondary_indexes(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::LocalSecondaryIndex>> {
312        self.inner.get_local_secondary_indexes()
313    }
314    ///
315    /// Appends an item to `GlobalSecondaryIndexes`.
316    ///
317    /// To override the contents of this collection use [`set_global_secondary_indexes`](Self::set_global_secondary_indexes).
318    ///
319    /// <p>One or more global secondary indexes (the maximum is 20) to be created on the table. Each global secondary index in the array includes the following:</p>
320    /// <ul>
321    /// <li>
322    /// <p><code>IndexName</code> - The name of the global secondary index. Must be unique only for this table.</p>
323    /// <p></p></li>
324    /// <li>
325    /// <p><code>KeySchema</code> - Specifies the key schema for the global secondary index.</p></li>
326    /// <li>
327    /// <p><code>Projection</code> - Specifies attributes that are copied (projected) from the table into the index. These are in addition to the primary key attributes and index key attributes, which are automatically projected. Each attribute specification is composed of:</p>
328    /// <ul>
329    /// <li>
330    /// <p><code>ProjectionType</code> - One of the following:</p>
331    /// <ul>
332    /// <li>
333    /// <p><code>KEYS_ONLY</code> - Only the index and primary keys are projected into the index.</p></li>
334    /// <li>
335    /// <p><code>INCLUDE</code> - Only the specified table attributes are projected into the index. The list of projected attributes is in <code>NonKeyAttributes</code>.</p></li>
336    /// <li>
337    /// <p><code>ALL</code> - All of the table attributes are projected into the index.</p></li>
338    /// </ul></li>
339    /// <li>
340    /// <p><code>NonKeyAttributes</code> - A list of one or more non-key attribute names that are projected into the secondary index. The total count of attributes provided in <code>NonKeyAttributes</code>, summed across all of the secondary indexes, must not exceed 100. If you project the same attribute into two different indexes, this counts as two distinct attributes when determining the total. This limit only applies when you specify the ProjectionType of <code>INCLUDE</code>. You still can specify the ProjectionType of <code>ALL</code> to project all attributes from the source table, even if the table has more than 100 attributes.</p></li>
341    /// </ul></li>
342    /// <li>
343    /// <p><code>ProvisionedThroughput</code> - The provisioned throughput settings for the global secondary index, consisting of read and write capacity units.</p></li>
344    /// </ul>
345    pub fn global_secondary_indexes(mut self, input: crate::types::GlobalSecondaryIndex) -> Self {
346        self.inner = self.inner.global_secondary_indexes(input);
347        self
348    }
349    /// <p>One or more global secondary indexes (the maximum is 20) to be created on the table. Each global secondary index in the array includes the following:</p>
350    /// <ul>
351    /// <li>
352    /// <p><code>IndexName</code> - The name of the global secondary index. Must be unique only for this table.</p>
353    /// <p></p></li>
354    /// <li>
355    /// <p><code>KeySchema</code> - Specifies the key schema for the global secondary index.</p></li>
356    /// <li>
357    /// <p><code>Projection</code> - Specifies attributes that are copied (projected) from the table into the index. These are in addition to the primary key attributes and index key attributes, which are automatically projected. Each attribute specification is composed of:</p>
358    /// <ul>
359    /// <li>
360    /// <p><code>ProjectionType</code> - One of the following:</p>
361    /// <ul>
362    /// <li>
363    /// <p><code>KEYS_ONLY</code> - Only the index and primary keys are projected into the index.</p></li>
364    /// <li>
365    /// <p><code>INCLUDE</code> - Only the specified table attributes are projected into the index. The list of projected attributes is in <code>NonKeyAttributes</code>.</p></li>
366    /// <li>
367    /// <p><code>ALL</code> - All of the table attributes are projected into the index.</p></li>
368    /// </ul></li>
369    /// <li>
370    /// <p><code>NonKeyAttributes</code> - A list of one or more non-key attribute names that are projected into the secondary index. The total count of attributes provided in <code>NonKeyAttributes</code>, summed across all of the secondary indexes, must not exceed 100. If you project the same attribute into two different indexes, this counts as two distinct attributes when determining the total. This limit only applies when you specify the ProjectionType of <code>INCLUDE</code>. You still can specify the ProjectionType of <code>ALL</code> to project all attributes from the source table, even if the table has more than 100 attributes.</p></li>
371    /// </ul></li>
372    /// <li>
373    /// <p><code>ProvisionedThroughput</code> - The provisioned throughput settings for the global secondary index, consisting of read and write capacity units.</p></li>
374    /// </ul>
375    pub fn set_global_secondary_indexes(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::GlobalSecondaryIndex>>) -> Self {
376        self.inner = self.inner.set_global_secondary_indexes(input);
377        self
378    }
379    /// <p>One or more global secondary indexes (the maximum is 20) to be created on the table. Each global secondary index in the array includes the following:</p>
380    /// <ul>
381    /// <li>
382    /// <p><code>IndexName</code> - The name of the global secondary index. Must be unique only for this table.</p>
383    /// <p></p></li>
384    /// <li>
385    /// <p><code>KeySchema</code> - Specifies the key schema for the global secondary index.</p></li>
386    /// <li>
387    /// <p><code>Projection</code> - Specifies attributes that are copied (projected) from the table into the index. These are in addition to the primary key attributes and index key attributes, which are automatically projected. Each attribute specification is composed of:</p>
388    /// <ul>
389    /// <li>
390    /// <p><code>ProjectionType</code> - One of the following:</p>
391    /// <ul>
392    /// <li>
393    /// <p><code>KEYS_ONLY</code> - Only the index and primary keys are projected into the index.</p></li>
394    /// <li>
395    /// <p><code>INCLUDE</code> - Only the specified table attributes are projected into the index. The list of projected attributes is in <code>NonKeyAttributes</code>.</p></li>
396    /// <li>
397    /// <p><code>ALL</code> - All of the table attributes are projected into the index.</p></li>
398    /// </ul></li>
399    /// <li>
400    /// <p><code>NonKeyAttributes</code> - A list of one or more non-key attribute names that are projected into the secondary index. The total count of attributes provided in <code>NonKeyAttributes</code>, summed across all of the secondary indexes, must not exceed 100. If you project the same attribute into two different indexes, this counts as two distinct attributes when determining the total. This limit only applies when you specify the ProjectionType of <code>INCLUDE</code>. You still can specify the ProjectionType of <code>ALL</code> to project all attributes from the source table, even if the table has more than 100 attributes.</p></li>
401    /// </ul></li>
402    /// <li>
403    /// <p><code>ProvisionedThroughput</code> - The provisioned throughput settings for the global secondary index, consisting of read and write capacity units.</p></li>
404    /// </ul>
405    pub fn get_global_secondary_indexes(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::GlobalSecondaryIndex>> {
406        self.inner.get_global_secondary_indexes()
407    }
408    /// <p>Controls how you are charged for read and write throughput and how you manage capacity. This setting can be changed later.</p>
409    /// <ul>
410    /// <li>
411    /// <p><code>PAY_PER_REQUEST</code> - We recommend using <code>PAY_PER_REQUEST</code> for most DynamoDB workloads. <code>PAY_PER_REQUEST</code> sets the billing mode to <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/on-demand-capacity-mode.html">On-demand capacity mode</a>.</p></li>
412    /// <li>
413    /// <p><code>PROVISIONED</code> - We recommend using <code>PROVISIONED</code> for steady workloads with predictable growth where capacity requirements can be reliably forecasted. <code>PROVISIONED</code> sets the billing mode to <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/provisioned-capacity-mode.html">Provisioned capacity mode</a>.</p></li>
414    /// </ul>
415    pub fn billing_mode(mut self, input: crate::types::BillingMode) -> Self {
416        self.inner = self.inner.billing_mode(input);
417        self
418    }
419    /// <p>Controls how you are charged for read and write throughput and how you manage capacity. This setting can be changed later.</p>
420    /// <ul>
421    /// <li>
422    /// <p><code>PAY_PER_REQUEST</code> - We recommend using <code>PAY_PER_REQUEST</code> for most DynamoDB workloads. <code>PAY_PER_REQUEST</code> sets the billing mode to <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/on-demand-capacity-mode.html">On-demand capacity mode</a>.</p></li>
423    /// <li>
424    /// <p><code>PROVISIONED</code> - We recommend using <code>PROVISIONED</code> for steady workloads with predictable growth where capacity requirements can be reliably forecasted. <code>PROVISIONED</code> sets the billing mode to <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/provisioned-capacity-mode.html">Provisioned capacity mode</a>.</p></li>
425    /// </ul>
426    pub fn set_billing_mode(mut self, input: ::std::option::Option<crate::types::BillingMode>) -> Self {
427        self.inner = self.inner.set_billing_mode(input);
428        self
429    }
430    /// <p>Controls how you are charged for read and write throughput and how you manage capacity. This setting can be changed later.</p>
431    /// <ul>
432    /// <li>
433    /// <p><code>PAY_PER_REQUEST</code> - We recommend using <code>PAY_PER_REQUEST</code> for most DynamoDB workloads. <code>PAY_PER_REQUEST</code> sets the billing mode to <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/on-demand-capacity-mode.html">On-demand capacity mode</a>.</p></li>
434    /// <li>
435    /// <p><code>PROVISIONED</code> - We recommend using <code>PROVISIONED</code> for steady workloads with predictable growth where capacity requirements can be reliably forecasted. <code>PROVISIONED</code> sets the billing mode to <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/provisioned-capacity-mode.html">Provisioned capacity mode</a>.</p></li>
436    /// </ul>
437    pub fn get_billing_mode(&self) -> &::std::option::Option<crate::types::BillingMode> {
438        self.inner.get_billing_mode()
439    }
440    /// <p>Represents the provisioned throughput settings for a specified table or index. The settings can be modified using the <code>UpdateTable</code> operation.</p>
441    /// <p>If you set BillingMode as <code>PROVISIONED</code>, you must specify this property. If you set BillingMode as <code>PAY_PER_REQUEST</code>, you cannot specify this property.</p>
442    /// <p>For current minimum and maximum provisioned throughput values, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html">Service, Account, and Table Quotas</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
443    pub fn provisioned_throughput(mut self, input: crate::types::ProvisionedThroughput) -> Self {
444        self.inner = self.inner.provisioned_throughput(input);
445        self
446    }
447    /// <p>Represents the provisioned throughput settings for a specified table or index. The settings can be modified using the <code>UpdateTable</code> operation.</p>
448    /// <p>If you set BillingMode as <code>PROVISIONED</code>, you must specify this property. If you set BillingMode as <code>PAY_PER_REQUEST</code>, you cannot specify this property.</p>
449    /// <p>For current minimum and maximum provisioned throughput values, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html">Service, Account, and Table Quotas</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
450    pub fn set_provisioned_throughput(mut self, input: ::std::option::Option<crate::types::ProvisionedThroughput>) -> Self {
451        self.inner = self.inner.set_provisioned_throughput(input);
452        self
453    }
454    /// <p>Represents the provisioned throughput settings for a specified table or index. The settings can be modified using the <code>UpdateTable</code> operation.</p>
455    /// <p>If you set BillingMode as <code>PROVISIONED</code>, you must specify this property. If you set BillingMode as <code>PAY_PER_REQUEST</code>, you cannot specify this property.</p>
456    /// <p>For current minimum and maximum provisioned throughput values, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html">Service, Account, and Table Quotas</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
457    pub fn get_provisioned_throughput(&self) -> &::std::option::Option<crate::types::ProvisionedThroughput> {
458        self.inner.get_provisioned_throughput()
459    }
460    /// <p>The settings for DynamoDB Streams on the table. These settings consist of:</p>
461    /// <ul>
462    /// <li>
463    /// <p><code>StreamEnabled</code> - Indicates whether DynamoDB Streams is to be enabled (true) or disabled (false).</p></li>
464    /// <li>
465    /// <p><code>StreamViewType</code> - When an item in the table is modified, <code>StreamViewType</code> determines what information is written to the table's stream. Valid values for <code>StreamViewType</code> are:</p>
466    /// <ul>
467    /// <li>
468    /// <p><code>KEYS_ONLY</code> - Only the key attributes of the modified item are written to the stream.</p></li>
469    /// <li>
470    /// <p><code>NEW_IMAGE</code> - The entire item, as it appears after it was modified, is written to the stream.</p></li>
471    /// <li>
472    /// <p><code>OLD_IMAGE</code> - The entire item, as it appeared before it was modified, is written to the stream.</p></li>
473    /// <li>
474    /// <p><code>NEW_AND_OLD_IMAGES</code> - Both the new and the old item images of the item are written to the stream.</p></li>
475    /// </ul></li>
476    /// </ul>
477    pub fn stream_specification(mut self, input: crate::types::StreamSpecification) -> Self {
478        self.inner = self.inner.stream_specification(input);
479        self
480    }
481    /// <p>The settings for DynamoDB Streams on the table. These settings consist of:</p>
482    /// <ul>
483    /// <li>
484    /// <p><code>StreamEnabled</code> - Indicates whether DynamoDB Streams is to be enabled (true) or disabled (false).</p></li>
485    /// <li>
486    /// <p><code>StreamViewType</code> - When an item in the table is modified, <code>StreamViewType</code> determines what information is written to the table's stream. Valid values for <code>StreamViewType</code> are:</p>
487    /// <ul>
488    /// <li>
489    /// <p><code>KEYS_ONLY</code> - Only the key attributes of the modified item are written to the stream.</p></li>
490    /// <li>
491    /// <p><code>NEW_IMAGE</code> - The entire item, as it appears after it was modified, is written to the stream.</p></li>
492    /// <li>
493    /// <p><code>OLD_IMAGE</code> - The entire item, as it appeared before it was modified, is written to the stream.</p></li>
494    /// <li>
495    /// <p><code>NEW_AND_OLD_IMAGES</code> - Both the new and the old item images of the item are written to the stream.</p></li>
496    /// </ul></li>
497    /// </ul>
498    pub fn set_stream_specification(mut self, input: ::std::option::Option<crate::types::StreamSpecification>) -> Self {
499        self.inner = self.inner.set_stream_specification(input);
500        self
501    }
502    /// <p>The settings for DynamoDB Streams on the table. These settings consist of:</p>
503    /// <ul>
504    /// <li>
505    /// <p><code>StreamEnabled</code> - Indicates whether DynamoDB Streams is to be enabled (true) or disabled (false).</p></li>
506    /// <li>
507    /// <p><code>StreamViewType</code> - When an item in the table is modified, <code>StreamViewType</code> determines what information is written to the table's stream. Valid values for <code>StreamViewType</code> are:</p>
508    /// <ul>
509    /// <li>
510    /// <p><code>KEYS_ONLY</code> - Only the key attributes of the modified item are written to the stream.</p></li>
511    /// <li>
512    /// <p><code>NEW_IMAGE</code> - The entire item, as it appears after it was modified, is written to the stream.</p></li>
513    /// <li>
514    /// <p><code>OLD_IMAGE</code> - The entire item, as it appeared before it was modified, is written to the stream.</p></li>
515    /// <li>
516    /// <p><code>NEW_AND_OLD_IMAGES</code> - Both the new and the old item images of the item are written to the stream.</p></li>
517    /// </ul></li>
518    /// </ul>
519    pub fn get_stream_specification(&self) -> &::std::option::Option<crate::types::StreamSpecification> {
520        self.inner.get_stream_specification()
521    }
522    /// <p>Represents the settings used to enable server-side encryption.</p>
523    pub fn sse_specification(mut self, input: crate::types::SseSpecification) -> Self {
524        self.inner = self.inner.sse_specification(input);
525        self
526    }
527    /// <p>Represents the settings used to enable server-side encryption.</p>
528    pub fn set_sse_specification(mut self, input: ::std::option::Option<crate::types::SseSpecification>) -> Self {
529        self.inner = self.inner.set_sse_specification(input);
530        self
531    }
532    /// <p>Represents the settings used to enable server-side encryption.</p>
533    pub fn get_sse_specification(&self) -> &::std::option::Option<crate::types::SseSpecification> {
534        self.inner.get_sse_specification()
535    }
536    ///
537    /// Appends an item to `Tags`.
538    ///
539    /// To override the contents of this collection use [`set_tags`](Self::set_tags).
540    ///
541    /// <p>A list of key-value pairs to label the table. For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tagging.html">Tagging for DynamoDB</a>.</p>
542    pub fn tags(mut self, input: crate::types::Tag) -> Self {
543        self.inner = self.inner.tags(input);
544        self
545    }
546    /// <p>A list of key-value pairs to label the table. For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tagging.html">Tagging for DynamoDB</a>.</p>
547    pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec<crate::types::Tag>>) -> Self {
548        self.inner = self.inner.set_tags(input);
549        self
550    }
551    /// <p>A list of key-value pairs to label the table. For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tagging.html">Tagging for DynamoDB</a>.</p>
552    pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec<crate::types::Tag>> {
553        self.inner.get_tags()
554    }
555    /// <p>The table class of the new table. Valid values are <code>STANDARD</code> and <code>STANDARD_INFREQUENT_ACCESS</code>.</p>
556    pub fn table_class(mut self, input: crate::types::TableClass) -> Self {
557        self.inner = self.inner.table_class(input);
558        self
559    }
560    /// <p>The table class of the new table. Valid values are <code>STANDARD</code> and <code>STANDARD_INFREQUENT_ACCESS</code>.</p>
561    pub fn set_table_class(mut self, input: ::std::option::Option<crate::types::TableClass>) -> Self {
562        self.inner = self.inner.set_table_class(input);
563        self
564    }
565    /// <p>The table class of the new table. Valid values are <code>STANDARD</code> and <code>STANDARD_INFREQUENT_ACCESS</code>.</p>
566    pub fn get_table_class(&self) -> &::std::option::Option<crate::types::TableClass> {
567        self.inner.get_table_class()
568    }
569    /// <p>Indicates whether deletion protection is to be enabled (true) or disabled (false) on the table.</p>
570    pub fn deletion_protection_enabled(mut self, input: bool) -> Self {
571        self.inner = self.inner.deletion_protection_enabled(input);
572        self
573    }
574    /// <p>Indicates whether deletion protection is to be enabled (true) or disabled (false) on the table.</p>
575    pub fn set_deletion_protection_enabled(mut self, input: ::std::option::Option<bool>) -> Self {
576        self.inner = self.inner.set_deletion_protection_enabled(input);
577        self
578    }
579    /// <p>Indicates whether deletion protection is to be enabled (true) or disabled (false) on the table.</p>
580    pub fn get_deletion_protection_enabled(&self) -> &::std::option::Option<bool> {
581        self.inner.get_deletion_protection_enabled()
582    }
583    /// <p>Represents the warm throughput (in read units per second and write units per second) for creating a table.</p>
584    pub fn warm_throughput(mut self, input: crate::types::WarmThroughput) -> Self {
585        self.inner = self.inner.warm_throughput(input);
586        self
587    }
588    /// <p>Represents the warm throughput (in read units per second and write units per second) for creating a table.</p>
589    pub fn set_warm_throughput(mut self, input: ::std::option::Option<crate::types::WarmThroughput>) -> Self {
590        self.inner = self.inner.set_warm_throughput(input);
591        self
592    }
593    /// <p>Represents the warm throughput (in read units per second and write units per second) for creating a table.</p>
594    pub fn get_warm_throughput(&self) -> &::std::option::Option<crate::types::WarmThroughput> {
595        self.inner.get_warm_throughput()
596    }
597    /// <p>An Amazon Web Services resource-based policy document in JSON format that will be attached to the table.</p>
598    /// <p>When you attach a resource-based policy while creating a table, the policy application is <i>strongly consistent</i>.</p>
599    /// <p>The maximum size supported for a resource-based policy document is 20 KB. DynamoDB counts whitespaces when calculating the size of a policy against this limit. For a full list of all considerations that apply for resource-based policies, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/rbac-considerations.html">Resource-based policy considerations</a>.</p><note>
600    /// <p>You need to specify the <code>CreateTable</code> and <code>PutResourcePolicy</code> IAM actions for authorizing a user to create a table with a resource-based policy.</p>
601    /// </note>
602    pub fn resource_policy(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
603        self.inner = self.inner.resource_policy(input.into());
604        self
605    }
606    /// <p>An Amazon Web Services resource-based policy document in JSON format that will be attached to the table.</p>
607    /// <p>When you attach a resource-based policy while creating a table, the policy application is <i>strongly consistent</i>.</p>
608    /// <p>The maximum size supported for a resource-based policy document is 20 KB. DynamoDB counts whitespaces when calculating the size of a policy against this limit. For a full list of all considerations that apply for resource-based policies, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/rbac-considerations.html">Resource-based policy considerations</a>.</p><note>
609    /// <p>You need to specify the <code>CreateTable</code> and <code>PutResourcePolicy</code> IAM actions for authorizing a user to create a table with a resource-based policy.</p>
610    /// </note>
611    pub fn set_resource_policy(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
612        self.inner = self.inner.set_resource_policy(input);
613        self
614    }
615    /// <p>An Amazon Web Services resource-based policy document in JSON format that will be attached to the table.</p>
616    /// <p>When you attach a resource-based policy while creating a table, the policy application is <i>strongly consistent</i>.</p>
617    /// <p>The maximum size supported for a resource-based policy document is 20 KB. DynamoDB counts whitespaces when calculating the size of a policy against this limit. For a full list of all considerations that apply for resource-based policies, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/rbac-considerations.html">Resource-based policy considerations</a>.</p><note>
618    /// <p>You need to specify the <code>CreateTable</code> and <code>PutResourcePolicy</code> IAM actions for authorizing a user to create a table with a resource-based policy.</p>
619    /// </note>
620    pub fn get_resource_policy(&self) -> &::std::option::Option<::std::string::String> {
621        self.inner.get_resource_policy()
622    }
623    /// <p>Sets the maximum number of read and write units for the specified table in on-demand capacity mode. If you use this parameter, you must specify <code>MaxReadRequestUnits</code>, <code>MaxWriteRequestUnits</code>, or both.</p>
624    pub fn on_demand_throughput(mut self, input: crate::types::OnDemandThroughput) -> Self {
625        self.inner = self.inner.on_demand_throughput(input);
626        self
627    }
628    /// <p>Sets the maximum number of read and write units for the specified table in on-demand capacity mode. If you use this parameter, you must specify <code>MaxReadRequestUnits</code>, <code>MaxWriteRequestUnits</code>, or both.</p>
629    pub fn set_on_demand_throughput(mut self, input: ::std::option::Option<crate::types::OnDemandThroughput>) -> Self {
630        self.inner = self.inner.set_on_demand_throughput(input);
631        self
632    }
633    /// <p>Sets the maximum number of read and write units for the specified table in on-demand capacity mode. If you use this parameter, you must specify <code>MaxReadRequestUnits</code>, <code>MaxWriteRequestUnits</code>, or both.</p>
634    pub fn get_on_demand_throughput(&self) -> &::std::option::Option<crate::types::OnDemandThroughput> {
635        self.inner.get_on_demand_throughput()
636    }
637}