aws_sdk_dynamodb/operation/create_table/_create_table_input.rs
1// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
2
3/// <p>Represents the input of a <code>CreateTable</code> operation.</p>
4#[non_exhaustive]
5#[derive(::std::clone::Clone, ::std::cmp::PartialEq, ::std::fmt::Debug)]
6pub struct CreateTableInput {
7 /// <p>An array of attributes that describe the key schema for the table and indexes.</p>
8 pub attribute_definitions: ::std::option::Option<::std::vec::Vec::<crate::types::AttributeDefinition>>,
9 /// <p>The name of the table to create. You can also provide the Amazon Resource Name (ARN) of the table in this parameter.</p>
10 pub table_name: ::std::option::Option<::std::string::String>,
11 /// <p>Specifies the attributes that make up the primary key for a table or an index. The attributes in <code>KeySchema</code> must also be defined in the <code>AttributeDefinitions</code> array. For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataModel.html">Data Model</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
12 /// <p>Each <code>KeySchemaElement</code> in the array is composed of:</p>
13 /// <ul>
14 /// <li>
15 /// <p><code>AttributeName</code> - The name of this key attribute.</p></li>
16 /// <li>
17 /// <p><code>KeyType</code> - The role that the key attribute will assume:</p>
18 /// <ul>
19 /// <li>
20 /// <p><code>HASH</code> - partition key</p></li>
21 /// <li>
22 /// <p><code>RANGE</code> - sort key</p></li>
23 /// </ul></li>
24 /// </ul><note>
25 /// <p>The partition key of an item is also known as its <i>hash attribute</i>. The term "hash attribute" derives from the DynamoDB usage of an internal hash function to evenly distribute data items across partitions, based on their partition key values.</p>
26 /// <p>The sort key of an item is also known as its <i>range attribute</i>. The term "range attribute" derives from the way DynamoDB stores items with the same partition key physically close together, in sorted order by the sort key value.</p>
27 /// </note>
28 /// <p>For a simple primary key (partition key), you must provide exactly one element with a <code>KeyType</code> of <code>HASH</code>.</p>
29 /// <p>For a composite primary key (partition key and sort key), you must provide exactly two elements, in this order: The first element must have a <code>KeyType</code> of <code>HASH</code>, and the second element must have a <code>KeyType</code> of <code>RANGE</code>.</p>
30 /// <p>For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html#WorkingWithTables.primary.key">Working with Tables</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
31 pub key_schema: ::std::option::Option<::std::vec::Vec::<crate::types::KeySchemaElement>>,
32 /// <p>One or more local secondary indexes (the maximum is 5) to be created on the table. Each index is scoped to a given partition key value. There is a 10 GB size limit per partition key value; otherwise, the size of a local secondary index is unconstrained.</p>
33 /// <p>Each local secondary index in the array includes the following:</p>
34 /// <ul>
35 /// <li>
36 /// <p><code>IndexName</code> - The name of the local secondary index. Must be unique only for this table.</p>
37 /// <p></p></li>
38 /// <li>
39 /// <p><code>KeySchema</code> - Specifies the key schema for the local secondary index. The key schema must begin with the same partition key as the table.</p></li>
40 /// <li>
41 /// <p><code>Projection</code> - Specifies attributes that are copied (projected) from the table into the index. These are in addition to the primary key attributes and index key attributes, which are automatically projected. Each attribute specification is composed of:</p>
42 /// <ul>
43 /// <li>
44 /// <p><code>ProjectionType</code> - One of the following:</p>
45 /// <ul>
46 /// <li>
47 /// <p><code>KEYS_ONLY</code> - Only the index and primary keys are projected into the index.</p></li>
48 /// <li>
49 /// <p><code>INCLUDE</code> - Only the specified table attributes are projected into the index. The list of projected attributes is in <code>NonKeyAttributes</code>.</p></li>
50 /// <li>
51 /// <p><code>ALL</code> - All of the table attributes are projected into the index.</p></li>
52 /// </ul></li>
53 /// <li>
54 /// <p><code>NonKeyAttributes</code> - A list of one or more non-key attribute names that are projected into the secondary index. The total count of attributes provided in <code>NonKeyAttributes</code>, summed across all of the secondary indexes, must not exceed 100. If you project the same attribute into two different indexes, this counts as two distinct attributes when determining the total. This limit only applies when you specify the ProjectionType of <code>INCLUDE</code>. You still can specify the ProjectionType of <code>ALL</code> to project all attributes from the source table, even if the table has more than 100 attributes.</p></li>
55 /// </ul></li>
56 /// </ul>
57 pub local_secondary_indexes: ::std::option::Option<::std::vec::Vec::<crate::types::LocalSecondaryIndex>>,
58 /// <p>One or more global secondary indexes (the maximum is 20) to be created on the table. Each global secondary index in the array includes the following:</p>
59 /// <ul>
60 /// <li>
61 /// <p><code>IndexName</code> - The name of the global secondary index. Must be unique only for this table.</p>
62 /// <p></p></li>
63 /// <li>
64 /// <p><code>KeySchema</code> - Specifies the key schema for the global secondary index.</p></li>
65 /// <li>
66 /// <p><code>Projection</code> - Specifies attributes that are copied (projected) from the table into the index. These are in addition to the primary key attributes and index key attributes, which are automatically projected. Each attribute specification is composed of:</p>
67 /// <ul>
68 /// <li>
69 /// <p><code>ProjectionType</code> - One of the following:</p>
70 /// <ul>
71 /// <li>
72 /// <p><code>KEYS_ONLY</code> - Only the index and primary keys are projected into the index.</p></li>
73 /// <li>
74 /// <p><code>INCLUDE</code> - Only the specified table attributes are projected into the index. The list of projected attributes is in <code>NonKeyAttributes</code>.</p></li>
75 /// <li>
76 /// <p><code>ALL</code> - All of the table attributes are projected into the index.</p></li>
77 /// </ul></li>
78 /// <li>
79 /// <p><code>NonKeyAttributes</code> - A list of one or more non-key attribute names that are projected into the secondary index. The total count of attributes provided in <code>NonKeyAttributes</code>, summed across all of the secondary indexes, must not exceed 100. If you project the same attribute into two different indexes, this counts as two distinct attributes when determining the total. This limit only applies when you specify the ProjectionType of <code>INCLUDE</code>. You still can specify the ProjectionType of <code>ALL</code> to project all attributes from the source table, even if the table has more than 100 attributes.</p></li>
80 /// </ul></li>
81 /// <li>
82 /// <p><code>ProvisionedThroughput</code> - The provisioned throughput settings for the global secondary index, consisting of read and write capacity units.</p></li>
83 /// </ul>
84 pub global_secondary_indexes: ::std::option::Option<::std::vec::Vec::<crate::types::GlobalSecondaryIndex>>,
85 /// <p>Controls how you are charged for read and write throughput and how you manage capacity. This setting can be changed later.</p>
86 /// <ul>
87 /// <li>
88 /// <p><code>PAY_PER_REQUEST</code> - We recommend using <code>PAY_PER_REQUEST</code> for most DynamoDB workloads. <code>PAY_PER_REQUEST</code> sets the billing mode to <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/on-demand-capacity-mode.html">On-demand capacity mode</a>.</p></li>
89 /// <li>
90 /// <p><code>PROVISIONED</code> - We recommend using <code>PROVISIONED</code> for steady workloads with predictable growth where capacity requirements can be reliably forecasted. <code>PROVISIONED</code> sets the billing mode to <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/provisioned-capacity-mode.html">Provisioned capacity mode</a>.</p></li>
91 /// </ul>
92 pub billing_mode: ::std::option::Option<crate::types::BillingMode>,
93 /// <p>Represents the provisioned throughput settings for a specified table or index. The settings can be modified using the <code>UpdateTable</code> operation.</p>
94 /// <p>If you set BillingMode as <code>PROVISIONED</code>, you must specify this property. If you set BillingMode as <code>PAY_PER_REQUEST</code>, you cannot specify this property.</p>
95 /// <p>For current minimum and maximum provisioned throughput values, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html">Service, Account, and Table Quotas</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
96 pub provisioned_throughput: ::std::option::Option<crate::types::ProvisionedThroughput>,
97 /// <p>The settings for DynamoDB Streams on the table. These settings consist of:</p>
98 /// <ul>
99 /// <li>
100 /// <p><code>StreamEnabled</code> - Indicates whether DynamoDB Streams is to be enabled (true) or disabled (false).</p></li>
101 /// <li>
102 /// <p><code>StreamViewType</code> - When an item in the table is modified, <code>StreamViewType</code> determines what information is written to the table's stream. Valid values for <code>StreamViewType</code> are:</p>
103 /// <ul>
104 /// <li>
105 /// <p><code>KEYS_ONLY</code> - Only the key attributes of the modified item are written to the stream.</p></li>
106 /// <li>
107 /// <p><code>NEW_IMAGE</code> - The entire item, as it appears after it was modified, is written to the stream.</p></li>
108 /// <li>
109 /// <p><code>OLD_IMAGE</code> - The entire item, as it appeared before it was modified, is written to the stream.</p></li>
110 /// <li>
111 /// <p><code>NEW_AND_OLD_IMAGES</code> - Both the new and the old item images of the item are written to the stream.</p></li>
112 /// </ul></li>
113 /// </ul>
114 pub stream_specification: ::std::option::Option<crate::types::StreamSpecification>,
115 /// <p>Represents the settings used to enable server-side encryption.</p>
116 pub sse_specification: ::std::option::Option<crate::types::SseSpecification>,
117 /// <p>A list of key-value pairs to label the table. For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tagging.html">Tagging for DynamoDB</a>.</p>
118 pub tags: ::std::option::Option<::std::vec::Vec::<crate::types::Tag>>,
119 /// <p>The table class of the new table. Valid values are <code>STANDARD</code> and <code>STANDARD_INFREQUENT_ACCESS</code>.</p>
120 pub table_class: ::std::option::Option<crate::types::TableClass>,
121 /// <p>Indicates whether deletion protection is to be enabled (true) or disabled (false) on the table.</p>
122 pub deletion_protection_enabled: ::std::option::Option<bool>,
123 /// <p>Represents the warm throughput (in read units per second and write units per second) for creating a table.</p>
124 pub warm_throughput: ::std::option::Option<crate::types::WarmThroughput>,
125 /// <p>An Amazon Web Services resource-based policy document in JSON format that will be attached to the table.</p>
126 /// <p>When you attach a resource-based policy while creating a table, the policy application is <i>strongly consistent</i>.</p>
127 /// <p>The maximum size supported for a resource-based policy document is 20 KB. DynamoDB counts whitespaces when calculating the size of a policy against this limit. For a full list of all considerations that apply for resource-based policies, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/rbac-considerations.html">Resource-based policy considerations</a>.</p><note>
128 /// <p>You need to specify the <code>CreateTable</code> and <code>PutResourcePolicy</code> IAM actions for authorizing a user to create a table with a resource-based policy.</p>
129 /// </note>
130 pub resource_policy: ::std::option::Option<::std::string::String>,
131 /// <p>Sets the maximum number of read and write units for the specified table in on-demand capacity mode. If you use this parameter, you must specify <code>MaxReadRequestUnits</code>, <code>MaxWriteRequestUnits</code>, or both.</p>
132 pub on_demand_throughput: ::std::option::Option<crate::types::OnDemandThroughput>,
133}
134impl CreateTableInput {
135 /// <p>An array of attributes that describe the key schema for the table and indexes.</p>
136 ///
137 /// If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use `.attribute_definitions.is_none()`.
138 pub fn attribute_definitions(&self) -> &[crate::types::AttributeDefinition] {
139 self.attribute_definitions.as_deref()
140 .unwrap_or_default()
141 }
142 /// <p>The name of the table to create. You can also provide the Amazon Resource Name (ARN) of the table in this parameter.</p>
143 pub fn table_name(&self) -> ::std::option::Option<&str> {
144 self.table_name.as_deref()
145 }
146 /// <p>Specifies the attributes that make up the primary key for a table or an index. The attributes in <code>KeySchema</code> must also be defined in the <code>AttributeDefinitions</code> array. For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataModel.html">Data Model</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
147 /// <p>Each <code>KeySchemaElement</code> in the array is composed of:</p>
148 /// <ul>
149 /// <li>
150 /// <p><code>AttributeName</code> - The name of this key attribute.</p></li>
151 /// <li>
152 /// <p><code>KeyType</code> - The role that the key attribute will assume:</p>
153 /// <ul>
154 /// <li>
155 /// <p><code>HASH</code> - partition key</p></li>
156 /// <li>
157 /// <p><code>RANGE</code> - sort key</p></li>
158 /// </ul></li>
159 /// </ul><note>
160 /// <p>The partition key of an item is also known as its <i>hash attribute</i>. The term "hash attribute" derives from the DynamoDB usage of an internal hash function to evenly distribute data items across partitions, based on their partition key values.</p>
161 /// <p>The sort key of an item is also known as its <i>range attribute</i>. The term "range attribute" derives from the way DynamoDB stores items with the same partition key physically close together, in sorted order by the sort key value.</p>
162 /// </note>
163 /// <p>For a simple primary key (partition key), you must provide exactly one element with a <code>KeyType</code> of <code>HASH</code>.</p>
164 /// <p>For a composite primary key (partition key and sort key), you must provide exactly two elements, in this order: The first element must have a <code>KeyType</code> of <code>HASH</code>, and the second element must have a <code>KeyType</code> of <code>RANGE</code>.</p>
165 /// <p>For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html#WorkingWithTables.primary.key">Working with Tables</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
166 ///
167 /// If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use `.key_schema.is_none()`.
168 pub fn key_schema(&self) -> &[crate::types::KeySchemaElement] {
169 self.key_schema.as_deref()
170 .unwrap_or_default()
171 }
172 /// <p>One or more local secondary indexes (the maximum is 5) to be created on the table. Each index is scoped to a given partition key value. There is a 10 GB size limit per partition key value; otherwise, the size of a local secondary index is unconstrained.</p>
173 /// <p>Each local secondary index in the array includes the following:</p>
174 /// <ul>
175 /// <li>
176 /// <p><code>IndexName</code> - The name of the local secondary index. Must be unique only for this table.</p>
177 /// <p></p></li>
178 /// <li>
179 /// <p><code>KeySchema</code> - Specifies the key schema for the local secondary index. The key schema must begin with the same partition key as the table.</p></li>
180 /// <li>
181 /// <p><code>Projection</code> - Specifies attributes that are copied (projected) from the table into the index. These are in addition to the primary key attributes and index key attributes, which are automatically projected. Each attribute specification is composed of:</p>
182 /// <ul>
183 /// <li>
184 /// <p><code>ProjectionType</code> - One of the following:</p>
185 /// <ul>
186 /// <li>
187 /// <p><code>KEYS_ONLY</code> - Only the index and primary keys are projected into the index.</p></li>
188 /// <li>
189 /// <p><code>INCLUDE</code> - Only the specified table attributes are projected into the index. The list of projected attributes is in <code>NonKeyAttributes</code>.</p></li>
190 /// <li>
191 /// <p><code>ALL</code> - All of the table attributes are projected into the index.</p></li>
192 /// </ul></li>
193 /// <li>
194 /// <p><code>NonKeyAttributes</code> - A list of one or more non-key attribute names that are projected into the secondary index. The total count of attributes provided in <code>NonKeyAttributes</code>, summed across all of the secondary indexes, must not exceed 100. If you project the same attribute into two different indexes, this counts as two distinct attributes when determining the total. This limit only applies when you specify the ProjectionType of <code>INCLUDE</code>. You still can specify the ProjectionType of <code>ALL</code> to project all attributes from the source table, even if the table has more than 100 attributes.</p></li>
195 /// </ul></li>
196 /// </ul>
197 ///
198 /// If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use `.local_secondary_indexes.is_none()`.
199 pub fn local_secondary_indexes(&self) -> &[crate::types::LocalSecondaryIndex] {
200 self.local_secondary_indexes.as_deref()
201 .unwrap_or_default()
202 }
203 /// <p>One or more global secondary indexes (the maximum is 20) to be created on the table. Each global secondary index in the array includes the following:</p>
204 /// <ul>
205 /// <li>
206 /// <p><code>IndexName</code> - The name of the global secondary index. Must be unique only for this table.</p>
207 /// <p></p></li>
208 /// <li>
209 /// <p><code>KeySchema</code> - Specifies the key schema for the global secondary index.</p></li>
210 /// <li>
211 /// <p><code>Projection</code> - Specifies attributes that are copied (projected) from the table into the index. These are in addition to the primary key attributes and index key attributes, which are automatically projected. Each attribute specification is composed of:</p>
212 /// <ul>
213 /// <li>
214 /// <p><code>ProjectionType</code> - One of the following:</p>
215 /// <ul>
216 /// <li>
217 /// <p><code>KEYS_ONLY</code> - Only the index and primary keys are projected into the index.</p></li>
218 /// <li>
219 /// <p><code>INCLUDE</code> - Only the specified table attributes are projected into the index. The list of projected attributes is in <code>NonKeyAttributes</code>.</p></li>
220 /// <li>
221 /// <p><code>ALL</code> - All of the table attributes are projected into the index.</p></li>
222 /// </ul></li>
223 /// <li>
224 /// <p><code>NonKeyAttributes</code> - A list of one or more non-key attribute names that are projected into the secondary index. The total count of attributes provided in <code>NonKeyAttributes</code>, summed across all of the secondary indexes, must not exceed 100. If you project the same attribute into two different indexes, this counts as two distinct attributes when determining the total. This limit only applies when you specify the ProjectionType of <code>INCLUDE</code>. You still can specify the ProjectionType of <code>ALL</code> to project all attributes from the source table, even if the table has more than 100 attributes.</p></li>
225 /// </ul></li>
226 /// <li>
227 /// <p><code>ProvisionedThroughput</code> - The provisioned throughput settings for the global secondary index, consisting of read and write capacity units.</p></li>
228 /// </ul>
229 ///
230 /// If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use `.global_secondary_indexes.is_none()`.
231 pub fn global_secondary_indexes(&self) -> &[crate::types::GlobalSecondaryIndex] {
232 self.global_secondary_indexes.as_deref()
233 .unwrap_or_default()
234 }
235 /// <p>Controls how you are charged for read and write throughput and how you manage capacity. This setting can be changed later.</p>
236 /// <ul>
237 /// <li>
238 /// <p><code>PAY_PER_REQUEST</code> - We recommend using <code>PAY_PER_REQUEST</code> for most DynamoDB workloads. <code>PAY_PER_REQUEST</code> sets the billing mode to <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/on-demand-capacity-mode.html">On-demand capacity mode</a>.</p></li>
239 /// <li>
240 /// <p><code>PROVISIONED</code> - We recommend using <code>PROVISIONED</code> for steady workloads with predictable growth where capacity requirements can be reliably forecasted. <code>PROVISIONED</code> sets the billing mode to <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/provisioned-capacity-mode.html">Provisioned capacity mode</a>.</p></li>
241 /// </ul>
242 pub fn billing_mode(&self) -> ::std::option::Option<&crate::types::BillingMode> {
243 self.billing_mode.as_ref()
244 }
245 /// <p>Represents the provisioned throughput settings for a specified table or index. The settings can be modified using the <code>UpdateTable</code> operation.</p>
246 /// <p>If you set BillingMode as <code>PROVISIONED</code>, you must specify this property. If you set BillingMode as <code>PAY_PER_REQUEST</code>, you cannot specify this property.</p>
247 /// <p>For current minimum and maximum provisioned throughput values, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html">Service, Account, and Table Quotas</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
248 pub fn provisioned_throughput(&self) -> ::std::option::Option<&crate::types::ProvisionedThroughput> {
249 self.provisioned_throughput.as_ref()
250 }
251 /// <p>The settings for DynamoDB Streams on the table. These settings consist of:</p>
252 /// <ul>
253 /// <li>
254 /// <p><code>StreamEnabled</code> - Indicates whether DynamoDB Streams is to be enabled (true) or disabled (false).</p></li>
255 /// <li>
256 /// <p><code>StreamViewType</code> - When an item in the table is modified, <code>StreamViewType</code> determines what information is written to the table's stream. Valid values for <code>StreamViewType</code> are:</p>
257 /// <ul>
258 /// <li>
259 /// <p><code>KEYS_ONLY</code> - Only the key attributes of the modified item are written to the stream.</p></li>
260 /// <li>
261 /// <p><code>NEW_IMAGE</code> - The entire item, as it appears after it was modified, is written to the stream.</p></li>
262 /// <li>
263 /// <p><code>OLD_IMAGE</code> - The entire item, as it appeared before it was modified, is written to the stream.</p></li>
264 /// <li>
265 /// <p><code>NEW_AND_OLD_IMAGES</code> - Both the new and the old item images of the item are written to the stream.</p></li>
266 /// </ul></li>
267 /// </ul>
268 pub fn stream_specification(&self) -> ::std::option::Option<&crate::types::StreamSpecification> {
269 self.stream_specification.as_ref()
270 }
271 /// <p>Represents the settings used to enable server-side encryption.</p>
272 pub fn sse_specification(&self) -> ::std::option::Option<&crate::types::SseSpecification> {
273 self.sse_specification.as_ref()
274 }
275 /// <p>A list of key-value pairs to label the table. For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tagging.html">Tagging for DynamoDB</a>.</p>
276 ///
277 /// If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use `.tags.is_none()`.
278 pub fn tags(&self) -> &[crate::types::Tag] {
279 self.tags.as_deref()
280 .unwrap_or_default()
281 }
282 /// <p>The table class of the new table. Valid values are <code>STANDARD</code> and <code>STANDARD_INFREQUENT_ACCESS</code>.</p>
283 pub fn table_class(&self) -> ::std::option::Option<&crate::types::TableClass> {
284 self.table_class.as_ref()
285 }
286 /// <p>Indicates whether deletion protection is to be enabled (true) or disabled (false) on the table.</p>
287 pub fn deletion_protection_enabled(&self) -> ::std::option::Option<bool> {
288 self.deletion_protection_enabled
289 }
290 /// <p>Represents the warm throughput (in read units per second and write units per second) for creating a table.</p>
291 pub fn warm_throughput(&self) -> ::std::option::Option<&crate::types::WarmThroughput> {
292 self.warm_throughput.as_ref()
293 }
294 /// <p>An Amazon Web Services resource-based policy document in JSON format that will be attached to the table.</p>
295 /// <p>When you attach a resource-based policy while creating a table, the policy application is <i>strongly consistent</i>.</p>
296 /// <p>The maximum size supported for a resource-based policy document is 20 KB. DynamoDB counts whitespaces when calculating the size of a policy against this limit. For a full list of all considerations that apply for resource-based policies, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/rbac-considerations.html">Resource-based policy considerations</a>.</p><note>
297 /// <p>You need to specify the <code>CreateTable</code> and <code>PutResourcePolicy</code> IAM actions for authorizing a user to create a table with a resource-based policy.</p>
298 /// </note>
299 pub fn resource_policy(&self) -> ::std::option::Option<&str> {
300 self.resource_policy.as_deref()
301 }
302 /// <p>Sets the maximum number of read and write units for the specified table in on-demand capacity mode. If you use this parameter, you must specify <code>MaxReadRequestUnits</code>, <code>MaxWriteRequestUnits</code>, or both.</p>
303 pub fn on_demand_throughput(&self) -> ::std::option::Option<&crate::types::OnDemandThroughput> {
304 self.on_demand_throughput.as_ref()
305 }
306}
307impl CreateTableInput {
308 /// Creates a new builder-style object to manufacture [`CreateTableInput`](crate::operation::create_table::CreateTableInput).
309 pub fn builder() -> crate::operation::create_table::builders::CreateTableInputBuilder {
310 crate::operation::create_table::builders::CreateTableInputBuilder::default()
311 }
312}
313
314/// A builder for [`CreateTableInput`](crate::operation::create_table::CreateTableInput).
315#[derive(::std::clone::Clone, ::std::cmp::PartialEq, ::std::default::Default, ::std::fmt::Debug)]
316#[non_exhaustive]
317pub struct CreateTableInputBuilder {
318 pub(crate) attribute_definitions: ::std::option::Option<::std::vec::Vec::<crate::types::AttributeDefinition>>,
319 pub(crate) table_name: ::std::option::Option<::std::string::String>,
320 pub(crate) key_schema: ::std::option::Option<::std::vec::Vec::<crate::types::KeySchemaElement>>,
321 pub(crate) local_secondary_indexes: ::std::option::Option<::std::vec::Vec::<crate::types::LocalSecondaryIndex>>,
322 pub(crate) global_secondary_indexes: ::std::option::Option<::std::vec::Vec::<crate::types::GlobalSecondaryIndex>>,
323 pub(crate) billing_mode: ::std::option::Option<crate::types::BillingMode>,
324 pub(crate) provisioned_throughput: ::std::option::Option<crate::types::ProvisionedThroughput>,
325 pub(crate) stream_specification: ::std::option::Option<crate::types::StreamSpecification>,
326 pub(crate) sse_specification: ::std::option::Option<crate::types::SseSpecification>,
327 pub(crate) tags: ::std::option::Option<::std::vec::Vec::<crate::types::Tag>>,
328 pub(crate) table_class: ::std::option::Option<crate::types::TableClass>,
329 pub(crate) deletion_protection_enabled: ::std::option::Option<bool>,
330 pub(crate) warm_throughput: ::std::option::Option<crate::types::WarmThroughput>,
331 pub(crate) resource_policy: ::std::option::Option<::std::string::String>,
332 pub(crate) on_demand_throughput: ::std::option::Option<crate::types::OnDemandThroughput>,
333}
334impl CreateTableInputBuilder {
335 /// Appends an item to `attribute_definitions`.
336 ///
337 /// To override the contents of this collection use [`set_attribute_definitions`](Self::set_attribute_definitions).
338 ///
339 /// <p>An array of attributes that describe the key schema for the table and indexes.</p>
340 pub fn attribute_definitions(mut self, input: crate::types::AttributeDefinition) -> Self {
341 let mut v = self.attribute_definitions.unwrap_or_default();
342 v.push(input);
343 self.attribute_definitions = ::std::option::Option::Some(v);
344 self
345 }
346 /// <p>An array of attributes that describe the key schema for the table and indexes.</p>
347 pub fn set_attribute_definitions(mut self, input: ::std::option::Option<::std::vec::Vec::<crate::types::AttributeDefinition>>) -> Self {
348 self.attribute_definitions = input; self
349 }
350 /// <p>An array of attributes that describe the key schema for the table and indexes.</p>
351 pub fn get_attribute_definitions(&self) -> &::std::option::Option<::std::vec::Vec::<crate::types::AttributeDefinition>> {
352 &self.attribute_definitions
353 }
354 /// <p>The name of the table to create. You can also provide the Amazon Resource Name (ARN) of the table in this parameter.</p>
355 /// This field is required.
356 pub fn table_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
357 self.table_name = ::std::option::Option::Some(input.into());
358 self
359 }
360 /// <p>The name of the table to create. You can also provide the Amazon Resource Name (ARN) of the table in this parameter.</p>
361 pub fn set_table_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
362 self.table_name = input; self
363 }
364 /// <p>The name of the table to create. You can also provide the Amazon Resource Name (ARN) of the table in this parameter.</p>
365 pub fn get_table_name(&self) -> &::std::option::Option<::std::string::String> {
366 &self.table_name
367 }
368 /// Appends an item to `key_schema`.
369 ///
370 /// To override the contents of this collection use [`set_key_schema`](Self::set_key_schema).
371 ///
372 /// <p>Specifies the attributes that make up the primary key for a table or an index. The attributes in <code>KeySchema</code> must also be defined in the <code>AttributeDefinitions</code> array. For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataModel.html">Data Model</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
373 /// <p>Each <code>KeySchemaElement</code> in the array is composed of:</p>
374 /// <ul>
375 /// <li>
376 /// <p><code>AttributeName</code> - The name of this key attribute.</p></li>
377 /// <li>
378 /// <p><code>KeyType</code> - The role that the key attribute will assume:</p>
379 /// <ul>
380 /// <li>
381 /// <p><code>HASH</code> - partition key</p></li>
382 /// <li>
383 /// <p><code>RANGE</code> - sort key</p></li>
384 /// </ul></li>
385 /// </ul><note>
386 /// <p>The partition key of an item is also known as its <i>hash attribute</i>. The term "hash attribute" derives from the DynamoDB usage of an internal hash function to evenly distribute data items across partitions, based on their partition key values.</p>
387 /// <p>The sort key of an item is also known as its <i>range attribute</i>. The term "range attribute" derives from the way DynamoDB stores items with the same partition key physically close together, in sorted order by the sort key value.</p>
388 /// </note>
389 /// <p>For a simple primary key (partition key), you must provide exactly one element with a <code>KeyType</code> of <code>HASH</code>.</p>
390 /// <p>For a composite primary key (partition key and sort key), you must provide exactly two elements, in this order: The first element must have a <code>KeyType</code> of <code>HASH</code>, and the second element must have a <code>KeyType</code> of <code>RANGE</code>.</p>
391 /// <p>For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html#WorkingWithTables.primary.key">Working with Tables</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
392 pub fn key_schema(mut self, input: crate::types::KeySchemaElement) -> Self {
393 let mut v = self.key_schema.unwrap_or_default();
394 v.push(input);
395 self.key_schema = ::std::option::Option::Some(v);
396 self
397 }
398 /// <p>Specifies the attributes that make up the primary key for a table or an index. The attributes in <code>KeySchema</code> must also be defined in the <code>AttributeDefinitions</code> array. For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataModel.html">Data Model</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
399 /// <p>Each <code>KeySchemaElement</code> in the array is composed of:</p>
400 /// <ul>
401 /// <li>
402 /// <p><code>AttributeName</code> - The name of this key attribute.</p></li>
403 /// <li>
404 /// <p><code>KeyType</code> - The role that the key attribute will assume:</p>
405 /// <ul>
406 /// <li>
407 /// <p><code>HASH</code> - partition key</p></li>
408 /// <li>
409 /// <p><code>RANGE</code> - sort key</p></li>
410 /// </ul></li>
411 /// </ul><note>
412 /// <p>The partition key of an item is also known as its <i>hash attribute</i>. The term "hash attribute" derives from the DynamoDB usage of an internal hash function to evenly distribute data items across partitions, based on their partition key values.</p>
413 /// <p>The sort key of an item is also known as its <i>range attribute</i>. The term "range attribute" derives from the way DynamoDB stores items with the same partition key physically close together, in sorted order by the sort key value.</p>
414 /// </note>
415 /// <p>For a simple primary key (partition key), you must provide exactly one element with a <code>KeyType</code> of <code>HASH</code>.</p>
416 /// <p>For a composite primary key (partition key and sort key), you must provide exactly two elements, in this order: The first element must have a <code>KeyType</code> of <code>HASH</code>, and the second element must have a <code>KeyType</code> of <code>RANGE</code>.</p>
417 /// <p>For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html#WorkingWithTables.primary.key">Working with Tables</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
418 pub fn set_key_schema(mut self, input: ::std::option::Option<::std::vec::Vec::<crate::types::KeySchemaElement>>) -> Self {
419 self.key_schema = input; self
420 }
421 /// <p>Specifies the attributes that make up the primary key for a table or an index. The attributes in <code>KeySchema</code> must also be defined in the <code>AttributeDefinitions</code> array. For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataModel.html">Data Model</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
422 /// <p>Each <code>KeySchemaElement</code> in the array is composed of:</p>
423 /// <ul>
424 /// <li>
425 /// <p><code>AttributeName</code> - The name of this key attribute.</p></li>
426 /// <li>
427 /// <p><code>KeyType</code> - The role that the key attribute will assume:</p>
428 /// <ul>
429 /// <li>
430 /// <p><code>HASH</code> - partition key</p></li>
431 /// <li>
432 /// <p><code>RANGE</code> - sort key</p></li>
433 /// </ul></li>
434 /// </ul><note>
435 /// <p>The partition key of an item is also known as its <i>hash attribute</i>. The term "hash attribute" derives from the DynamoDB usage of an internal hash function to evenly distribute data items across partitions, based on their partition key values.</p>
436 /// <p>The sort key of an item is also known as its <i>range attribute</i>. The term "range attribute" derives from the way DynamoDB stores items with the same partition key physically close together, in sorted order by the sort key value.</p>
437 /// </note>
438 /// <p>For a simple primary key (partition key), you must provide exactly one element with a <code>KeyType</code> of <code>HASH</code>.</p>
439 /// <p>For a composite primary key (partition key and sort key), you must provide exactly two elements, in this order: The first element must have a <code>KeyType</code> of <code>HASH</code>, and the second element must have a <code>KeyType</code> of <code>RANGE</code>.</p>
440 /// <p>For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html#WorkingWithTables.primary.key">Working with Tables</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
441 pub fn get_key_schema(&self) -> &::std::option::Option<::std::vec::Vec::<crate::types::KeySchemaElement>> {
442 &self.key_schema
443 }
444 /// Appends an item to `local_secondary_indexes`.
445 ///
446 /// To override the contents of this collection use [`set_local_secondary_indexes`](Self::set_local_secondary_indexes).
447 ///
448 /// <p>One or more local secondary indexes (the maximum is 5) to be created on the table. Each index is scoped to a given partition key value. There is a 10 GB size limit per partition key value; otherwise, the size of a local secondary index is unconstrained.</p>
449 /// <p>Each local secondary index in the array includes the following:</p>
450 /// <ul>
451 /// <li>
452 /// <p><code>IndexName</code> - The name of the local secondary index. Must be unique only for this table.</p>
453 /// <p></p></li>
454 /// <li>
455 /// <p><code>KeySchema</code> - Specifies the key schema for the local secondary index. The key schema must begin with the same partition key as the table.</p></li>
456 /// <li>
457 /// <p><code>Projection</code> - Specifies attributes that are copied (projected) from the table into the index. These are in addition to the primary key attributes and index key attributes, which are automatically projected. Each attribute specification is composed of:</p>
458 /// <ul>
459 /// <li>
460 /// <p><code>ProjectionType</code> - One of the following:</p>
461 /// <ul>
462 /// <li>
463 /// <p><code>KEYS_ONLY</code> - Only the index and primary keys are projected into the index.</p></li>
464 /// <li>
465 /// <p><code>INCLUDE</code> - Only the specified table attributes are projected into the index. The list of projected attributes is in <code>NonKeyAttributes</code>.</p></li>
466 /// <li>
467 /// <p><code>ALL</code> - All of the table attributes are projected into the index.</p></li>
468 /// </ul></li>
469 /// <li>
470 /// <p><code>NonKeyAttributes</code> - A list of one or more non-key attribute names that are projected into the secondary index. The total count of attributes provided in <code>NonKeyAttributes</code>, summed across all of the secondary indexes, must not exceed 100. If you project the same attribute into two different indexes, this counts as two distinct attributes when determining the total. This limit only applies when you specify the ProjectionType of <code>INCLUDE</code>. You still can specify the ProjectionType of <code>ALL</code> to project all attributes from the source table, even if the table has more than 100 attributes.</p></li>
471 /// </ul></li>
472 /// </ul>
473 pub fn local_secondary_indexes(mut self, input: crate::types::LocalSecondaryIndex) -> Self {
474 let mut v = self.local_secondary_indexes.unwrap_or_default();
475 v.push(input);
476 self.local_secondary_indexes = ::std::option::Option::Some(v);
477 self
478 }
479 /// <p>One or more local secondary indexes (the maximum is 5) to be created on the table. Each index is scoped to a given partition key value. There is a 10 GB size limit per partition key value; otherwise, the size of a local secondary index is unconstrained.</p>
480 /// <p>Each local secondary index in the array includes the following:</p>
481 /// <ul>
482 /// <li>
483 /// <p><code>IndexName</code> - The name of the local secondary index. Must be unique only for this table.</p>
484 /// <p></p></li>
485 /// <li>
486 /// <p><code>KeySchema</code> - Specifies the key schema for the local secondary index. The key schema must begin with the same partition key as the table.</p></li>
487 /// <li>
488 /// <p><code>Projection</code> - Specifies attributes that are copied (projected) from the table into the index. These are in addition to the primary key attributes and index key attributes, which are automatically projected. Each attribute specification is composed of:</p>
489 /// <ul>
490 /// <li>
491 /// <p><code>ProjectionType</code> - One of the following:</p>
492 /// <ul>
493 /// <li>
494 /// <p><code>KEYS_ONLY</code> - Only the index and primary keys are projected into the index.</p></li>
495 /// <li>
496 /// <p><code>INCLUDE</code> - Only the specified table attributes are projected into the index. The list of projected attributes is in <code>NonKeyAttributes</code>.</p></li>
497 /// <li>
498 /// <p><code>ALL</code> - All of the table attributes are projected into the index.</p></li>
499 /// </ul></li>
500 /// <li>
501 /// <p><code>NonKeyAttributes</code> - A list of one or more non-key attribute names that are projected into the secondary index. The total count of attributes provided in <code>NonKeyAttributes</code>, summed across all of the secondary indexes, must not exceed 100. If you project the same attribute into two different indexes, this counts as two distinct attributes when determining the total. This limit only applies when you specify the ProjectionType of <code>INCLUDE</code>. You still can specify the ProjectionType of <code>ALL</code> to project all attributes from the source table, even if the table has more than 100 attributes.</p></li>
502 /// </ul></li>
503 /// </ul>
504 pub fn set_local_secondary_indexes(mut self, input: ::std::option::Option<::std::vec::Vec::<crate::types::LocalSecondaryIndex>>) -> Self {
505 self.local_secondary_indexes = input; self
506 }
507 /// <p>One or more local secondary indexes (the maximum is 5) to be created on the table. Each index is scoped to a given partition key value. There is a 10 GB size limit per partition key value; otherwise, the size of a local secondary index is unconstrained.</p>
508 /// <p>Each local secondary index in the array includes the following:</p>
509 /// <ul>
510 /// <li>
511 /// <p><code>IndexName</code> - The name of the local secondary index. Must be unique only for this table.</p>
512 /// <p></p></li>
513 /// <li>
514 /// <p><code>KeySchema</code> - Specifies the key schema for the local secondary index. The key schema must begin with the same partition key as the table.</p></li>
515 /// <li>
516 /// <p><code>Projection</code> - Specifies attributes that are copied (projected) from the table into the index. These are in addition to the primary key attributes and index key attributes, which are automatically projected. Each attribute specification is composed of:</p>
517 /// <ul>
518 /// <li>
519 /// <p><code>ProjectionType</code> - One of the following:</p>
520 /// <ul>
521 /// <li>
522 /// <p><code>KEYS_ONLY</code> - Only the index and primary keys are projected into the index.</p></li>
523 /// <li>
524 /// <p><code>INCLUDE</code> - Only the specified table attributes are projected into the index. The list of projected attributes is in <code>NonKeyAttributes</code>.</p></li>
525 /// <li>
526 /// <p><code>ALL</code> - All of the table attributes are projected into the index.</p></li>
527 /// </ul></li>
528 /// <li>
529 /// <p><code>NonKeyAttributes</code> - A list of one or more non-key attribute names that are projected into the secondary index. The total count of attributes provided in <code>NonKeyAttributes</code>, summed across all of the secondary indexes, must not exceed 100. If you project the same attribute into two different indexes, this counts as two distinct attributes when determining the total. This limit only applies when you specify the ProjectionType of <code>INCLUDE</code>. You still can specify the ProjectionType of <code>ALL</code> to project all attributes from the source table, even if the table has more than 100 attributes.</p></li>
530 /// </ul></li>
531 /// </ul>
532 pub fn get_local_secondary_indexes(&self) -> &::std::option::Option<::std::vec::Vec::<crate::types::LocalSecondaryIndex>> {
533 &self.local_secondary_indexes
534 }
535 /// Appends an item to `global_secondary_indexes`.
536 ///
537 /// To override the contents of this collection use [`set_global_secondary_indexes`](Self::set_global_secondary_indexes).
538 ///
539 /// <p>One or more global secondary indexes (the maximum is 20) to be created on the table. Each global secondary index in the array includes the following:</p>
540 /// <ul>
541 /// <li>
542 /// <p><code>IndexName</code> - The name of the global secondary index. Must be unique only for this table.</p>
543 /// <p></p></li>
544 /// <li>
545 /// <p><code>KeySchema</code> - Specifies the key schema for the global secondary index.</p></li>
546 /// <li>
547 /// <p><code>Projection</code> - Specifies attributes that are copied (projected) from the table into the index. These are in addition to the primary key attributes and index key attributes, which are automatically projected. Each attribute specification is composed of:</p>
548 /// <ul>
549 /// <li>
550 /// <p><code>ProjectionType</code> - One of the following:</p>
551 /// <ul>
552 /// <li>
553 /// <p><code>KEYS_ONLY</code> - Only the index and primary keys are projected into the index.</p></li>
554 /// <li>
555 /// <p><code>INCLUDE</code> - Only the specified table attributes are projected into the index. The list of projected attributes is in <code>NonKeyAttributes</code>.</p></li>
556 /// <li>
557 /// <p><code>ALL</code> - All of the table attributes are projected into the index.</p></li>
558 /// </ul></li>
559 /// <li>
560 /// <p><code>NonKeyAttributes</code> - A list of one or more non-key attribute names that are projected into the secondary index. The total count of attributes provided in <code>NonKeyAttributes</code>, summed across all of the secondary indexes, must not exceed 100. If you project the same attribute into two different indexes, this counts as two distinct attributes when determining the total. This limit only applies when you specify the ProjectionType of <code>INCLUDE</code>. You still can specify the ProjectionType of <code>ALL</code> to project all attributes from the source table, even if the table has more than 100 attributes.</p></li>
561 /// </ul></li>
562 /// <li>
563 /// <p><code>ProvisionedThroughput</code> - The provisioned throughput settings for the global secondary index, consisting of read and write capacity units.</p></li>
564 /// </ul>
565 pub fn global_secondary_indexes(mut self, input: crate::types::GlobalSecondaryIndex) -> Self {
566 let mut v = self.global_secondary_indexes.unwrap_or_default();
567 v.push(input);
568 self.global_secondary_indexes = ::std::option::Option::Some(v);
569 self
570 }
571 /// <p>One or more global secondary indexes (the maximum is 20) to be created on the table. Each global secondary index in the array includes the following:</p>
572 /// <ul>
573 /// <li>
574 /// <p><code>IndexName</code> - The name of the global secondary index. Must be unique only for this table.</p>
575 /// <p></p></li>
576 /// <li>
577 /// <p><code>KeySchema</code> - Specifies the key schema for the global secondary index.</p></li>
578 /// <li>
579 /// <p><code>Projection</code> - Specifies attributes that are copied (projected) from the table into the index. These are in addition to the primary key attributes and index key attributes, which are automatically projected. Each attribute specification is composed of:</p>
580 /// <ul>
581 /// <li>
582 /// <p><code>ProjectionType</code> - One of the following:</p>
583 /// <ul>
584 /// <li>
585 /// <p><code>KEYS_ONLY</code> - Only the index and primary keys are projected into the index.</p></li>
586 /// <li>
587 /// <p><code>INCLUDE</code> - Only the specified table attributes are projected into the index. The list of projected attributes is in <code>NonKeyAttributes</code>.</p></li>
588 /// <li>
589 /// <p><code>ALL</code> - All of the table attributes are projected into the index.</p></li>
590 /// </ul></li>
591 /// <li>
592 /// <p><code>NonKeyAttributes</code> - A list of one or more non-key attribute names that are projected into the secondary index. The total count of attributes provided in <code>NonKeyAttributes</code>, summed across all of the secondary indexes, must not exceed 100. If you project the same attribute into two different indexes, this counts as two distinct attributes when determining the total. This limit only applies when you specify the ProjectionType of <code>INCLUDE</code>. You still can specify the ProjectionType of <code>ALL</code> to project all attributes from the source table, even if the table has more than 100 attributes.</p></li>
593 /// </ul></li>
594 /// <li>
595 /// <p><code>ProvisionedThroughput</code> - The provisioned throughput settings for the global secondary index, consisting of read and write capacity units.</p></li>
596 /// </ul>
597 pub fn set_global_secondary_indexes(mut self, input: ::std::option::Option<::std::vec::Vec::<crate::types::GlobalSecondaryIndex>>) -> Self {
598 self.global_secondary_indexes = input; self
599 }
600 /// <p>One or more global secondary indexes (the maximum is 20) to be created on the table. Each global secondary index in the array includes the following:</p>
601 /// <ul>
602 /// <li>
603 /// <p><code>IndexName</code> - The name of the global secondary index. Must be unique only for this table.</p>
604 /// <p></p></li>
605 /// <li>
606 /// <p><code>KeySchema</code> - Specifies the key schema for the global secondary index.</p></li>
607 /// <li>
608 /// <p><code>Projection</code> - Specifies attributes that are copied (projected) from the table into the index. These are in addition to the primary key attributes and index key attributes, which are automatically projected. Each attribute specification is composed of:</p>
609 /// <ul>
610 /// <li>
611 /// <p><code>ProjectionType</code> - One of the following:</p>
612 /// <ul>
613 /// <li>
614 /// <p><code>KEYS_ONLY</code> - Only the index and primary keys are projected into the index.</p></li>
615 /// <li>
616 /// <p><code>INCLUDE</code> - Only the specified table attributes are projected into the index. The list of projected attributes is in <code>NonKeyAttributes</code>.</p></li>
617 /// <li>
618 /// <p><code>ALL</code> - All of the table attributes are projected into the index.</p></li>
619 /// </ul></li>
620 /// <li>
621 /// <p><code>NonKeyAttributes</code> - A list of one or more non-key attribute names that are projected into the secondary index. The total count of attributes provided in <code>NonKeyAttributes</code>, summed across all of the secondary indexes, must not exceed 100. If you project the same attribute into two different indexes, this counts as two distinct attributes when determining the total. This limit only applies when you specify the ProjectionType of <code>INCLUDE</code>. You still can specify the ProjectionType of <code>ALL</code> to project all attributes from the source table, even if the table has more than 100 attributes.</p></li>
622 /// </ul></li>
623 /// <li>
624 /// <p><code>ProvisionedThroughput</code> - The provisioned throughput settings for the global secondary index, consisting of read and write capacity units.</p></li>
625 /// </ul>
626 pub fn get_global_secondary_indexes(&self) -> &::std::option::Option<::std::vec::Vec::<crate::types::GlobalSecondaryIndex>> {
627 &self.global_secondary_indexes
628 }
629 /// <p>Controls how you are charged for read and write throughput and how you manage capacity. This setting can be changed later.</p>
630 /// <ul>
631 /// <li>
632 /// <p><code>PAY_PER_REQUEST</code> - We recommend using <code>PAY_PER_REQUEST</code> for most DynamoDB workloads. <code>PAY_PER_REQUEST</code> sets the billing mode to <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/on-demand-capacity-mode.html">On-demand capacity mode</a>.</p></li>
633 /// <li>
634 /// <p><code>PROVISIONED</code> - We recommend using <code>PROVISIONED</code> for steady workloads with predictable growth where capacity requirements can be reliably forecasted. <code>PROVISIONED</code> sets the billing mode to <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/provisioned-capacity-mode.html">Provisioned capacity mode</a>.</p></li>
635 /// </ul>
636 pub fn billing_mode(mut self, input: crate::types::BillingMode) -> Self {
637 self.billing_mode = ::std::option::Option::Some(input);
638 self
639 }
640 /// <p>Controls how you are charged for read and write throughput and how you manage capacity. This setting can be changed later.</p>
641 /// <ul>
642 /// <li>
643 /// <p><code>PAY_PER_REQUEST</code> - We recommend using <code>PAY_PER_REQUEST</code> for most DynamoDB workloads. <code>PAY_PER_REQUEST</code> sets the billing mode to <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/on-demand-capacity-mode.html">On-demand capacity mode</a>.</p></li>
644 /// <li>
645 /// <p><code>PROVISIONED</code> - We recommend using <code>PROVISIONED</code> for steady workloads with predictable growth where capacity requirements can be reliably forecasted. <code>PROVISIONED</code> sets the billing mode to <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/provisioned-capacity-mode.html">Provisioned capacity mode</a>.</p></li>
646 /// </ul>
647 pub fn set_billing_mode(mut self, input: ::std::option::Option<crate::types::BillingMode>) -> Self {
648 self.billing_mode = input; self
649 }
650 /// <p>Controls how you are charged for read and write throughput and how you manage capacity. This setting can be changed later.</p>
651 /// <ul>
652 /// <li>
653 /// <p><code>PAY_PER_REQUEST</code> - We recommend using <code>PAY_PER_REQUEST</code> for most DynamoDB workloads. <code>PAY_PER_REQUEST</code> sets the billing mode to <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/on-demand-capacity-mode.html">On-demand capacity mode</a>.</p></li>
654 /// <li>
655 /// <p><code>PROVISIONED</code> - We recommend using <code>PROVISIONED</code> for steady workloads with predictable growth where capacity requirements can be reliably forecasted. <code>PROVISIONED</code> sets the billing mode to <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/provisioned-capacity-mode.html">Provisioned capacity mode</a>.</p></li>
656 /// </ul>
657 pub fn get_billing_mode(&self) -> &::std::option::Option<crate::types::BillingMode> {
658 &self.billing_mode
659 }
660 /// <p>Represents the provisioned throughput settings for a specified table or index. The settings can be modified using the <code>UpdateTable</code> operation.</p>
661 /// <p>If you set BillingMode as <code>PROVISIONED</code>, you must specify this property. If you set BillingMode as <code>PAY_PER_REQUEST</code>, you cannot specify this property.</p>
662 /// <p>For current minimum and maximum provisioned throughput values, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html">Service, Account, and Table Quotas</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
663 pub fn provisioned_throughput(mut self, input: crate::types::ProvisionedThroughput) -> Self {
664 self.provisioned_throughput = ::std::option::Option::Some(input);
665 self
666 }
667 /// <p>Represents the provisioned throughput settings for a specified table or index. The settings can be modified using the <code>UpdateTable</code> operation.</p>
668 /// <p>If you set BillingMode as <code>PROVISIONED</code>, you must specify this property. If you set BillingMode as <code>PAY_PER_REQUEST</code>, you cannot specify this property.</p>
669 /// <p>For current minimum and maximum provisioned throughput values, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html">Service, Account, and Table Quotas</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
670 pub fn set_provisioned_throughput(mut self, input: ::std::option::Option<crate::types::ProvisionedThroughput>) -> Self {
671 self.provisioned_throughput = input; self
672 }
673 /// <p>Represents the provisioned throughput settings for a specified table or index. The settings can be modified using the <code>UpdateTable</code> operation.</p>
674 /// <p>If you set BillingMode as <code>PROVISIONED</code>, you must specify this property. If you set BillingMode as <code>PAY_PER_REQUEST</code>, you cannot specify this property.</p>
675 /// <p>For current minimum and maximum provisioned throughput values, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html">Service, Account, and Table Quotas</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
676 pub fn get_provisioned_throughput(&self) -> &::std::option::Option<crate::types::ProvisionedThroughput> {
677 &self.provisioned_throughput
678 }
679 /// <p>The settings for DynamoDB Streams on the table. These settings consist of:</p>
680 /// <ul>
681 /// <li>
682 /// <p><code>StreamEnabled</code> - Indicates whether DynamoDB Streams is to be enabled (true) or disabled (false).</p></li>
683 /// <li>
684 /// <p><code>StreamViewType</code> - When an item in the table is modified, <code>StreamViewType</code> determines what information is written to the table's stream. Valid values for <code>StreamViewType</code> are:</p>
685 /// <ul>
686 /// <li>
687 /// <p><code>KEYS_ONLY</code> - Only the key attributes of the modified item are written to the stream.</p></li>
688 /// <li>
689 /// <p><code>NEW_IMAGE</code> - The entire item, as it appears after it was modified, is written to the stream.</p></li>
690 /// <li>
691 /// <p><code>OLD_IMAGE</code> - The entire item, as it appeared before it was modified, is written to the stream.</p></li>
692 /// <li>
693 /// <p><code>NEW_AND_OLD_IMAGES</code> - Both the new and the old item images of the item are written to the stream.</p></li>
694 /// </ul></li>
695 /// </ul>
696 pub fn stream_specification(mut self, input: crate::types::StreamSpecification) -> Self {
697 self.stream_specification = ::std::option::Option::Some(input);
698 self
699 }
700 /// <p>The settings for DynamoDB Streams on the table. These settings consist of:</p>
701 /// <ul>
702 /// <li>
703 /// <p><code>StreamEnabled</code> - Indicates whether DynamoDB Streams is to be enabled (true) or disabled (false).</p></li>
704 /// <li>
705 /// <p><code>StreamViewType</code> - When an item in the table is modified, <code>StreamViewType</code> determines what information is written to the table's stream. Valid values for <code>StreamViewType</code> are:</p>
706 /// <ul>
707 /// <li>
708 /// <p><code>KEYS_ONLY</code> - Only the key attributes of the modified item are written to the stream.</p></li>
709 /// <li>
710 /// <p><code>NEW_IMAGE</code> - The entire item, as it appears after it was modified, is written to the stream.</p></li>
711 /// <li>
712 /// <p><code>OLD_IMAGE</code> - The entire item, as it appeared before it was modified, is written to the stream.</p></li>
713 /// <li>
714 /// <p><code>NEW_AND_OLD_IMAGES</code> - Both the new and the old item images of the item are written to the stream.</p></li>
715 /// </ul></li>
716 /// </ul>
717 pub fn set_stream_specification(mut self, input: ::std::option::Option<crate::types::StreamSpecification>) -> Self {
718 self.stream_specification = input; self
719 }
720 /// <p>The settings for DynamoDB Streams on the table. These settings consist of:</p>
721 /// <ul>
722 /// <li>
723 /// <p><code>StreamEnabled</code> - Indicates whether DynamoDB Streams is to be enabled (true) or disabled (false).</p></li>
724 /// <li>
725 /// <p><code>StreamViewType</code> - When an item in the table is modified, <code>StreamViewType</code> determines what information is written to the table's stream. Valid values for <code>StreamViewType</code> are:</p>
726 /// <ul>
727 /// <li>
728 /// <p><code>KEYS_ONLY</code> - Only the key attributes of the modified item are written to the stream.</p></li>
729 /// <li>
730 /// <p><code>NEW_IMAGE</code> - The entire item, as it appears after it was modified, is written to the stream.</p></li>
731 /// <li>
732 /// <p><code>OLD_IMAGE</code> - The entire item, as it appeared before it was modified, is written to the stream.</p></li>
733 /// <li>
734 /// <p><code>NEW_AND_OLD_IMAGES</code> - Both the new and the old item images of the item are written to the stream.</p></li>
735 /// </ul></li>
736 /// </ul>
737 pub fn get_stream_specification(&self) -> &::std::option::Option<crate::types::StreamSpecification> {
738 &self.stream_specification
739 }
740 /// <p>Represents the settings used to enable server-side encryption.</p>
741 pub fn sse_specification(mut self, input: crate::types::SseSpecification) -> Self {
742 self.sse_specification = ::std::option::Option::Some(input);
743 self
744 }
745 /// <p>Represents the settings used to enable server-side encryption.</p>
746 pub fn set_sse_specification(mut self, input: ::std::option::Option<crate::types::SseSpecification>) -> Self {
747 self.sse_specification = input; self
748 }
749 /// <p>Represents the settings used to enable server-side encryption.</p>
750 pub fn get_sse_specification(&self) -> &::std::option::Option<crate::types::SseSpecification> {
751 &self.sse_specification
752 }
753 /// Appends an item to `tags`.
754 ///
755 /// To override the contents of this collection use [`set_tags`](Self::set_tags).
756 ///
757 /// <p>A list of key-value pairs to label the table. For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tagging.html">Tagging for DynamoDB</a>.</p>
758 pub fn tags(mut self, input: crate::types::Tag) -> Self {
759 let mut v = self.tags.unwrap_or_default();
760 v.push(input);
761 self.tags = ::std::option::Option::Some(v);
762 self
763 }
764 /// <p>A list of key-value pairs to label the table. For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tagging.html">Tagging for DynamoDB</a>.</p>
765 pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec::<crate::types::Tag>>) -> Self {
766 self.tags = input; self
767 }
768 /// <p>A list of key-value pairs to label the table. For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tagging.html">Tagging for DynamoDB</a>.</p>
769 pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec::<crate::types::Tag>> {
770 &self.tags
771 }
772 /// <p>The table class of the new table. Valid values are <code>STANDARD</code> and <code>STANDARD_INFREQUENT_ACCESS</code>.</p>
773 pub fn table_class(mut self, input: crate::types::TableClass) -> Self {
774 self.table_class = ::std::option::Option::Some(input);
775 self
776 }
777 /// <p>The table class of the new table. Valid values are <code>STANDARD</code> and <code>STANDARD_INFREQUENT_ACCESS</code>.</p>
778 pub fn set_table_class(mut self, input: ::std::option::Option<crate::types::TableClass>) -> Self {
779 self.table_class = input; self
780 }
781 /// <p>The table class of the new table. Valid values are <code>STANDARD</code> and <code>STANDARD_INFREQUENT_ACCESS</code>.</p>
782 pub fn get_table_class(&self) -> &::std::option::Option<crate::types::TableClass> {
783 &self.table_class
784 }
785 /// <p>Indicates whether deletion protection is to be enabled (true) or disabled (false) on the table.</p>
786 pub fn deletion_protection_enabled(mut self, input: bool) -> Self {
787 self.deletion_protection_enabled = ::std::option::Option::Some(input);
788 self
789 }
790 /// <p>Indicates whether deletion protection is to be enabled (true) or disabled (false) on the table.</p>
791 pub fn set_deletion_protection_enabled(mut self, input: ::std::option::Option<bool>) -> Self {
792 self.deletion_protection_enabled = input; self
793 }
794 /// <p>Indicates whether deletion protection is to be enabled (true) or disabled (false) on the table.</p>
795 pub fn get_deletion_protection_enabled(&self) -> &::std::option::Option<bool> {
796 &self.deletion_protection_enabled
797 }
798 /// <p>Represents the warm throughput (in read units per second and write units per second) for creating a table.</p>
799 pub fn warm_throughput(mut self, input: crate::types::WarmThroughput) -> Self {
800 self.warm_throughput = ::std::option::Option::Some(input);
801 self
802 }
803 /// <p>Represents the warm throughput (in read units per second and write units per second) for creating a table.</p>
804 pub fn set_warm_throughput(mut self, input: ::std::option::Option<crate::types::WarmThroughput>) -> Self {
805 self.warm_throughput = input; self
806 }
807 /// <p>Represents the warm throughput (in read units per second and write units per second) for creating a table.</p>
808 pub fn get_warm_throughput(&self) -> &::std::option::Option<crate::types::WarmThroughput> {
809 &self.warm_throughput
810 }
811 /// <p>An Amazon Web Services resource-based policy document in JSON format that will be attached to the table.</p>
812 /// <p>When you attach a resource-based policy while creating a table, the policy application is <i>strongly consistent</i>.</p>
813 /// <p>The maximum size supported for a resource-based policy document is 20 KB. DynamoDB counts whitespaces when calculating the size of a policy against this limit. For a full list of all considerations that apply for resource-based policies, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/rbac-considerations.html">Resource-based policy considerations</a>.</p><note>
814 /// <p>You need to specify the <code>CreateTable</code> and <code>PutResourcePolicy</code> IAM actions for authorizing a user to create a table with a resource-based policy.</p>
815 /// </note>
816 pub fn resource_policy(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
817 self.resource_policy = ::std::option::Option::Some(input.into());
818 self
819 }
820 /// <p>An Amazon Web Services resource-based policy document in JSON format that will be attached to the table.</p>
821 /// <p>When you attach a resource-based policy while creating a table, the policy application is <i>strongly consistent</i>.</p>
822 /// <p>The maximum size supported for a resource-based policy document is 20 KB. DynamoDB counts whitespaces when calculating the size of a policy against this limit. For a full list of all considerations that apply for resource-based policies, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/rbac-considerations.html">Resource-based policy considerations</a>.</p><note>
823 /// <p>You need to specify the <code>CreateTable</code> and <code>PutResourcePolicy</code> IAM actions for authorizing a user to create a table with a resource-based policy.</p>
824 /// </note>
825 pub fn set_resource_policy(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
826 self.resource_policy = input; self
827 }
828 /// <p>An Amazon Web Services resource-based policy document in JSON format that will be attached to the table.</p>
829 /// <p>When you attach a resource-based policy while creating a table, the policy application is <i>strongly consistent</i>.</p>
830 /// <p>The maximum size supported for a resource-based policy document is 20 KB. DynamoDB counts whitespaces when calculating the size of a policy against this limit. For a full list of all considerations that apply for resource-based policies, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/rbac-considerations.html">Resource-based policy considerations</a>.</p><note>
831 /// <p>You need to specify the <code>CreateTable</code> and <code>PutResourcePolicy</code> IAM actions for authorizing a user to create a table with a resource-based policy.</p>
832 /// </note>
833 pub fn get_resource_policy(&self) -> &::std::option::Option<::std::string::String> {
834 &self.resource_policy
835 }
836 /// <p>Sets the maximum number of read and write units for the specified table in on-demand capacity mode. If you use this parameter, you must specify <code>MaxReadRequestUnits</code>, <code>MaxWriteRequestUnits</code>, or both.</p>
837 pub fn on_demand_throughput(mut self, input: crate::types::OnDemandThroughput) -> Self {
838 self.on_demand_throughput = ::std::option::Option::Some(input);
839 self
840 }
841 /// <p>Sets the maximum number of read and write units for the specified table in on-demand capacity mode. If you use this parameter, you must specify <code>MaxReadRequestUnits</code>, <code>MaxWriteRequestUnits</code>, or both.</p>
842 pub fn set_on_demand_throughput(mut self, input: ::std::option::Option<crate::types::OnDemandThroughput>) -> Self {
843 self.on_demand_throughput = input; self
844 }
845 /// <p>Sets the maximum number of read and write units for the specified table in on-demand capacity mode. If you use this parameter, you must specify <code>MaxReadRequestUnits</code>, <code>MaxWriteRequestUnits</code>, or both.</p>
846 pub fn get_on_demand_throughput(&self) -> &::std::option::Option<crate::types::OnDemandThroughput> {
847 &self.on_demand_throughput
848 }
849 /// Consumes the builder and constructs a [`CreateTableInput`](crate::operation::create_table::CreateTableInput).
850 pub fn build(self) -> ::std::result::Result<crate::operation::create_table::CreateTableInput, ::aws_smithy_types::error::operation::BuildError> {
851 ::std::result::Result::Ok(
852 crate::operation::create_table::CreateTableInput {
853 attribute_definitions: self.attribute_definitions
854 ,
855 table_name: self.table_name
856 ,
857 key_schema: self.key_schema
858 ,
859 local_secondary_indexes: self.local_secondary_indexes
860 ,
861 global_secondary_indexes: self.global_secondary_indexes
862 ,
863 billing_mode: self.billing_mode
864 ,
865 provisioned_throughput: self.provisioned_throughput
866 ,
867 stream_specification: self.stream_specification
868 ,
869 sse_specification: self.sse_specification
870 ,
871 tags: self.tags
872 ,
873 table_class: self.table_class
874 ,
875 deletion_protection_enabled: self.deletion_protection_enabled
876 ,
877 warm_throughput: self.warm_throughput
878 ,
879 resource_policy: self.resource_policy
880 ,
881 on_demand_throughput: self.on_demand_throughput
882 ,
883 }
884 )
885 }
886}
887