aws_sdk_dynamodb/operation/create_table/builders.rs
1// Code generated by software.amazon.smithy.rust.codegen.smithy-rs. DO NOT EDIT.
2pub use crate::operation::create_table::_create_table_output::CreateTableOutputBuilder;
3
4pub use crate::operation::create_table::_create_table_input::CreateTableInputBuilder;
5
6impl crate::operation::create_table::builders::CreateTableInputBuilder {
7 /// Sends a request with this input using the given client.
8 pub async fn send_with(self, client: &crate::Client) -> ::std::result::Result<
9 crate::operation::create_table::CreateTableOutput,
10 ::aws_smithy_runtime_api::client::result::SdkError<
11 crate::operation::create_table::CreateTableError,
12 ::aws_smithy_runtime_api::client::orchestrator::HttpResponse
13 >
14 > {
15 let mut fluent_builder = client.create_table();
16 fluent_builder.inner = self;
17 fluent_builder.send().await
18 }
19 }
20/// Fluent builder constructing a request to `CreateTable`.
21///
22/// <p>The <code>CreateTable</code> operation adds a new table to your account. In an Amazon Web Services account, table names must be unique within each Region. That is, you can have two tables with same name if you create the tables in different Regions.</p>
23/// <p><code>CreateTable</code> is an asynchronous operation. Upon receiving a <code>CreateTable</code> request, DynamoDB immediately returns a response with a <code>TableStatus</code> of <code>CREATING</code>. After the table is created, DynamoDB sets the <code>TableStatus</code> to <code>ACTIVE</code>. You can perform read and write operations only on an <code>ACTIVE</code> table.</p>
24/// <p>You can optionally define secondary indexes on the new table, as part of the <code>CreateTable</code> operation. If you want to create multiple tables with secondary indexes on them, you must create the tables sequentially. Only one table with secondary indexes can be in the <code>CREATING</code> state at any given time.</p>
25/// <p>You can use the <code>DescribeTable</code> action to check the table status.</p>
26#[derive(::std::clone::Clone, ::std::fmt::Debug)]
27pub struct CreateTableFluentBuilder {
28 handle: ::std::sync::Arc<crate::client::Handle>,
29 inner: crate::operation::create_table::builders::CreateTableInputBuilder,
30config_override: ::std::option::Option<crate::config::Builder>,
31 }
32impl
33 crate::client::customize::internal::CustomizableSend<
34 crate::operation::create_table::CreateTableOutput,
35 crate::operation::create_table::CreateTableError,
36 > for CreateTableFluentBuilder
37 {
38 fn send(
39 self,
40 config_override: crate::config::Builder,
41 ) -> crate::client::customize::internal::BoxFuture<
42 crate::client::customize::internal::SendResult<
43 crate::operation::create_table::CreateTableOutput,
44 crate::operation::create_table::CreateTableError,
45 >,
46 > {
47 ::std::boxed::Box::pin(async move { self.config_override(config_override).send().await })
48 }
49 }
50impl CreateTableFluentBuilder {
51 /// Creates a new `CreateTableFluentBuilder`.
52 pub(crate) fn new(handle: ::std::sync::Arc<crate::client::Handle>) -> Self {
53 Self {
54 handle,
55 inner: ::std::default::Default::default(),
56 config_override: ::std::option::Option::None,
57 }
58 }
59 /// Access the CreateTable as a reference.
60 pub fn as_input(&self) -> &crate::operation::create_table::builders::CreateTableInputBuilder {
61 &self.inner
62 }
63 /// Sends the request and returns the response.
64 ///
65 /// If an error occurs, an `SdkError` will be returned with additional details that
66 /// can be matched against.
67 ///
68 /// By default, any retryable failures will be retried twice. Retry behavior
69 /// is configurable with the [RetryConfig](aws_smithy_types::retry::RetryConfig), which can be
70 /// set when configuring the client. Note: retries are enabled by default when using
71 /// `aws_config::load_from_env()` or when using `BehaviorVersion::v2025_01_17()` or later.
72 pub async fn send(self) -> ::std::result::Result<crate::operation::create_table::CreateTableOutput, ::aws_smithy_runtime_api::client::result::SdkError<crate::operation::create_table::CreateTableError, ::aws_smithy_runtime_api::client::orchestrator::HttpResponse>> {
73 let input = self.inner.build().map_err(::aws_smithy_runtime_api::client::result::SdkError::construction_failure)?;
74 let runtime_plugins = crate::operation::create_table::CreateTable::operation_runtime_plugins(
75 self.handle.runtime_plugins.clone(),
76 &self.handle.conf,
77 self.config_override,
78 );
79 crate::operation::create_table::CreateTable::orchestrate(&runtime_plugins, input).await
80 }
81
82 /// Consumes this builder, creating a customizable operation that can be modified before being sent.
83 pub fn customize(
84 self,
85 ) -> crate::client::customize::CustomizableOperation<crate::operation::create_table::CreateTableOutput, crate::operation::create_table::CreateTableError, Self> {
86 crate::client::customize::CustomizableOperation::new(self)
87 }
88 pub(crate) fn config_override(
89 mut self,
90 config_override: impl ::std::convert::Into<crate::config::Builder>,
91 ) -> Self {
92 self.set_config_override(::std::option::Option::Some(config_override.into()));
93 self
94 }
95
96 pub(crate) fn set_config_override(
97 &mut self,
98 config_override: ::std::option::Option<crate::config::Builder>,
99 ) -> &mut Self {
100 self.config_override = config_override;
101 self
102 }
103 ///
104 /// Appends an item to `AttributeDefinitions`.
105 ///
106 /// To override the contents of this collection use [`set_attribute_definitions`](Self::set_attribute_definitions).
107 ///
108 /// <p>An array of attributes that describe the key schema for the table and indexes.</p>
109 pub fn attribute_definitions(mut self, input: crate::types::AttributeDefinition) -> Self {
110 self.inner = self.inner.attribute_definitions(input);
111 self
112 }
113 /// <p>An array of attributes that describe the key schema for the table and indexes.</p>
114 pub fn set_attribute_definitions(mut self, input: ::std::option::Option<::std::vec::Vec::<crate::types::AttributeDefinition>>) -> Self {
115 self.inner = self.inner.set_attribute_definitions(input);
116 self
117 }
118 /// <p>An array of attributes that describe the key schema for the table and indexes.</p>
119 pub fn get_attribute_definitions(&self) -> &::std::option::Option<::std::vec::Vec::<crate::types::AttributeDefinition>> {
120 self.inner.get_attribute_definitions()
121 }
122 /// <p>The name of the table to create. You can also provide the Amazon Resource Name (ARN) of the table in this parameter.</p>
123 pub fn table_name(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
124 self.inner = self.inner.table_name(input.into());
125 self
126 }
127 /// <p>The name of the table to create. You can also provide the Amazon Resource Name (ARN) of the table in this parameter.</p>
128 pub fn set_table_name(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
129 self.inner = self.inner.set_table_name(input);
130 self
131 }
132 /// <p>The name of the table to create. You can also provide the Amazon Resource Name (ARN) of the table in this parameter.</p>
133 pub fn get_table_name(&self) -> &::std::option::Option<::std::string::String> {
134 self.inner.get_table_name()
135 }
136 ///
137 /// Appends an item to `KeySchema`.
138 ///
139 /// To override the contents of this collection use [`set_key_schema`](Self::set_key_schema).
140 ///
141 /// <p>Specifies the attributes that make up the primary key for a table or an index. The attributes in <code>KeySchema</code> must also be defined in the <code>AttributeDefinitions</code> array. For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataModel.html">Data Model</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
142 /// <p>Each <code>KeySchemaElement</code> in the array is composed of:</p>
143 /// <ul>
144 /// <li>
145 /// <p><code>AttributeName</code> - The name of this key attribute.</p></li>
146 /// <li>
147 /// <p><code>KeyType</code> - The role that the key attribute will assume:</p>
148 /// <ul>
149 /// <li>
150 /// <p><code>HASH</code> - partition key</p></li>
151 /// <li>
152 /// <p><code>RANGE</code> - sort key</p></li>
153 /// </ul></li>
154 /// </ul><note>
155 /// <p>The partition key of an item is also known as its <i>hash attribute</i>. The term "hash attribute" derives from the DynamoDB usage of an internal hash function to evenly distribute data items across partitions, based on their partition key values.</p>
156 /// <p>The sort key of an item is also known as its <i>range attribute</i>. The term "range attribute" derives from the way DynamoDB stores items with the same partition key physically close together, in sorted order by the sort key value.</p>
157 /// </note>
158 /// <p>For a simple primary key (partition key), you must provide exactly one element with a <code>KeyType</code> of <code>HASH</code>.</p>
159 /// <p>For a composite primary key (partition key and sort key), you must provide exactly two elements, in this order: The first element must have a <code>KeyType</code> of <code>HASH</code>, and the second element must have a <code>KeyType</code> of <code>RANGE</code>.</p>
160 /// <p>For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html#WorkingWithTables.primary.key">Working with Tables</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
161 pub fn key_schema(mut self, input: crate::types::KeySchemaElement) -> Self {
162 self.inner = self.inner.key_schema(input);
163 self
164 }
165 /// <p>Specifies the attributes that make up the primary key for a table or an index. The attributes in <code>KeySchema</code> must also be defined in the <code>AttributeDefinitions</code> array. For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataModel.html">Data Model</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
166 /// <p>Each <code>KeySchemaElement</code> in the array is composed of:</p>
167 /// <ul>
168 /// <li>
169 /// <p><code>AttributeName</code> - The name of this key attribute.</p></li>
170 /// <li>
171 /// <p><code>KeyType</code> - The role that the key attribute will assume:</p>
172 /// <ul>
173 /// <li>
174 /// <p><code>HASH</code> - partition key</p></li>
175 /// <li>
176 /// <p><code>RANGE</code> - sort key</p></li>
177 /// </ul></li>
178 /// </ul><note>
179 /// <p>The partition key of an item is also known as its <i>hash attribute</i>. The term "hash attribute" derives from the DynamoDB usage of an internal hash function to evenly distribute data items across partitions, based on their partition key values.</p>
180 /// <p>The sort key of an item is also known as its <i>range attribute</i>. The term "range attribute" derives from the way DynamoDB stores items with the same partition key physically close together, in sorted order by the sort key value.</p>
181 /// </note>
182 /// <p>For a simple primary key (partition key), you must provide exactly one element with a <code>KeyType</code> of <code>HASH</code>.</p>
183 /// <p>For a composite primary key (partition key and sort key), you must provide exactly two elements, in this order: The first element must have a <code>KeyType</code> of <code>HASH</code>, and the second element must have a <code>KeyType</code> of <code>RANGE</code>.</p>
184 /// <p>For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html#WorkingWithTables.primary.key">Working with Tables</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
185 pub fn set_key_schema(mut self, input: ::std::option::Option<::std::vec::Vec::<crate::types::KeySchemaElement>>) -> Self {
186 self.inner = self.inner.set_key_schema(input);
187 self
188 }
189 /// <p>Specifies the attributes that make up the primary key for a table or an index. The attributes in <code>KeySchema</code> must also be defined in the <code>AttributeDefinitions</code> array. For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataModel.html">Data Model</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
190 /// <p>Each <code>KeySchemaElement</code> in the array is composed of:</p>
191 /// <ul>
192 /// <li>
193 /// <p><code>AttributeName</code> - The name of this key attribute.</p></li>
194 /// <li>
195 /// <p><code>KeyType</code> - The role that the key attribute will assume:</p>
196 /// <ul>
197 /// <li>
198 /// <p><code>HASH</code> - partition key</p></li>
199 /// <li>
200 /// <p><code>RANGE</code> - sort key</p></li>
201 /// </ul></li>
202 /// </ul><note>
203 /// <p>The partition key of an item is also known as its <i>hash attribute</i>. The term "hash attribute" derives from the DynamoDB usage of an internal hash function to evenly distribute data items across partitions, based on their partition key values.</p>
204 /// <p>The sort key of an item is also known as its <i>range attribute</i>. The term "range attribute" derives from the way DynamoDB stores items with the same partition key physically close together, in sorted order by the sort key value.</p>
205 /// </note>
206 /// <p>For a simple primary key (partition key), you must provide exactly one element with a <code>KeyType</code> of <code>HASH</code>.</p>
207 /// <p>For a composite primary key (partition key and sort key), you must provide exactly two elements, in this order: The first element must have a <code>KeyType</code> of <code>HASH</code>, and the second element must have a <code>KeyType</code> of <code>RANGE</code>.</p>
208 /// <p>For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.html#WorkingWithTables.primary.key">Working with Tables</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
209 pub fn get_key_schema(&self) -> &::std::option::Option<::std::vec::Vec::<crate::types::KeySchemaElement>> {
210 self.inner.get_key_schema()
211 }
212 ///
213 /// Appends an item to `LocalSecondaryIndexes`.
214 ///
215 /// To override the contents of this collection use [`set_local_secondary_indexes`](Self::set_local_secondary_indexes).
216 ///
217 /// <p>One or more local secondary indexes (the maximum is 5) to be created on the table. Each index is scoped to a given partition key value. There is a 10 GB size limit per partition key value; otherwise, the size of a local secondary index is unconstrained.</p>
218 /// <p>Each local secondary index in the array includes the following:</p>
219 /// <ul>
220 /// <li>
221 /// <p><code>IndexName</code> - The name of the local secondary index. Must be unique only for this table.</p>
222 /// <p></p></li>
223 /// <li>
224 /// <p><code>KeySchema</code> - Specifies the key schema for the local secondary index. The key schema must begin with the same partition key as the table.</p></li>
225 /// <li>
226 /// <p><code>Projection</code> - Specifies attributes that are copied (projected) from the table into the index. These are in addition to the primary key attributes and index key attributes, which are automatically projected. Each attribute specification is composed of:</p>
227 /// <ul>
228 /// <li>
229 /// <p><code>ProjectionType</code> - One of the following:</p>
230 /// <ul>
231 /// <li>
232 /// <p><code>KEYS_ONLY</code> - Only the index and primary keys are projected into the index.</p></li>
233 /// <li>
234 /// <p><code>INCLUDE</code> - Only the specified table attributes are projected into the index. The list of projected attributes is in <code>NonKeyAttributes</code>.</p></li>
235 /// <li>
236 /// <p><code>ALL</code> - All of the table attributes are projected into the index.</p></li>
237 /// </ul></li>
238 /// <li>
239 /// <p><code>NonKeyAttributes</code> - A list of one or more non-key attribute names that are projected into the secondary index. The total count of attributes provided in <code>NonKeyAttributes</code>, summed across all of the secondary indexes, must not exceed 100. If you project the same attribute into two different indexes, this counts as two distinct attributes when determining the total. This limit only applies when you specify the ProjectionType of <code>INCLUDE</code>. You still can specify the ProjectionType of <code>ALL</code> to project all attributes from the source table, even if the table has more than 100 attributes.</p></li>
240 /// </ul></li>
241 /// </ul>
242 pub fn local_secondary_indexes(mut self, input: crate::types::LocalSecondaryIndex) -> Self {
243 self.inner = self.inner.local_secondary_indexes(input);
244 self
245 }
246 /// <p>One or more local secondary indexes (the maximum is 5) to be created on the table. Each index is scoped to a given partition key value. There is a 10 GB size limit per partition key value; otherwise, the size of a local secondary index is unconstrained.</p>
247 /// <p>Each local secondary index in the array includes the following:</p>
248 /// <ul>
249 /// <li>
250 /// <p><code>IndexName</code> - The name of the local secondary index. Must be unique only for this table.</p>
251 /// <p></p></li>
252 /// <li>
253 /// <p><code>KeySchema</code> - Specifies the key schema for the local secondary index. The key schema must begin with the same partition key as the table.</p></li>
254 /// <li>
255 /// <p><code>Projection</code> - Specifies attributes that are copied (projected) from the table into the index. These are in addition to the primary key attributes and index key attributes, which are automatically projected. Each attribute specification is composed of:</p>
256 /// <ul>
257 /// <li>
258 /// <p><code>ProjectionType</code> - One of the following:</p>
259 /// <ul>
260 /// <li>
261 /// <p><code>KEYS_ONLY</code> - Only the index and primary keys are projected into the index.</p></li>
262 /// <li>
263 /// <p><code>INCLUDE</code> - Only the specified table attributes are projected into the index. The list of projected attributes is in <code>NonKeyAttributes</code>.</p></li>
264 /// <li>
265 /// <p><code>ALL</code> - All of the table attributes are projected into the index.</p></li>
266 /// </ul></li>
267 /// <li>
268 /// <p><code>NonKeyAttributes</code> - A list of one or more non-key attribute names that are projected into the secondary index. The total count of attributes provided in <code>NonKeyAttributes</code>, summed across all of the secondary indexes, must not exceed 100. If you project the same attribute into two different indexes, this counts as two distinct attributes when determining the total. This limit only applies when you specify the ProjectionType of <code>INCLUDE</code>. You still can specify the ProjectionType of <code>ALL</code> to project all attributes from the source table, even if the table has more than 100 attributes.</p></li>
269 /// </ul></li>
270 /// </ul>
271 pub fn set_local_secondary_indexes(mut self, input: ::std::option::Option<::std::vec::Vec::<crate::types::LocalSecondaryIndex>>) -> Self {
272 self.inner = self.inner.set_local_secondary_indexes(input);
273 self
274 }
275 /// <p>One or more local secondary indexes (the maximum is 5) to be created on the table. Each index is scoped to a given partition key value. There is a 10 GB size limit per partition key value; otherwise, the size of a local secondary index is unconstrained.</p>
276 /// <p>Each local secondary index in the array includes the following:</p>
277 /// <ul>
278 /// <li>
279 /// <p><code>IndexName</code> - The name of the local secondary index. Must be unique only for this table.</p>
280 /// <p></p></li>
281 /// <li>
282 /// <p><code>KeySchema</code> - Specifies the key schema for the local secondary index. The key schema must begin with the same partition key as the table.</p></li>
283 /// <li>
284 /// <p><code>Projection</code> - Specifies attributes that are copied (projected) from the table into the index. These are in addition to the primary key attributes and index key attributes, which are automatically projected. Each attribute specification is composed of:</p>
285 /// <ul>
286 /// <li>
287 /// <p><code>ProjectionType</code> - One of the following:</p>
288 /// <ul>
289 /// <li>
290 /// <p><code>KEYS_ONLY</code> - Only the index and primary keys are projected into the index.</p></li>
291 /// <li>
292 /// <p><code>INCLUDE</code> - Only the specified table attributes are projected into the index. The list of projected attributes is in <code>NonKeyAttributes</code>.</p></li>
293 /// <li>
294 /// <p><code>ALL</code> - All of the table attributes are projected into the index.</p></li>
295 /// </ul></li>
296 /// <li>
297 /// <p><code>NonKeyAttributes</code> - A list of one or more non-key attribute names that are projected into the secondary index. The total count of attributes provided in <code>NonKeyAttributes</code>, summed across all of the secondary indexes, must not exceed 100. If you project the same attribute into two different indexes, this counts as two distinct attributes when determining the total. This limit only applies when you specify the ProjectionType of <code>INCLUDE</code>. You still can specify the ProjectionType of <code>ALL</code> to project all attributes from the source table, even if the table has more than 100 attributes.</p></li>
298 /// </ul></li>
299 /// </ul>
300 pub fn get_local_secondary_indexes(&self) -> &::std::option::Option<::std::vec::Vec::<crate::types::LocalSecondaryIndex>> {
301 self.inner.get_local_secondary_indexes()
302 }
303 ///
304 /// Appends an item to `GlobalSecondaryIndexes`.
305 ///
306 /// To override the contents of this collection use [`set_global_secondary_indexes`](Self::set_global_secondary_indexes).
307 ///
308 /// <p>One or more global secondary indexes (the maximum is 20) to be created on the table. Each global secondary index in the array includes the following:</p>
309 /// <ul>
310 /// <li>
311 /// <p><code>IndexName</code> - The name of the global secondary index. Must be unique only for this table.</p>
312 /// <p></p></li>
313 /// <li>
314 /// <p><code>KeySchema</code> - Specifies the key schema for the global secondary index.</p></li>
315 /// <li>
316 /// <p><code>Projection</code> - Specifies attributes that are copied (projected) from the table into the index. These are in addition to the primary key attributes and index key attributes, which are automatically projected. Each attribute specification is composed of:</p>
317 /// <ul>
318 /// <li>
319 /// <p><code>ProjectionType</code> - One of the following:</p>
320 /// <ul>
321 /// <li>
322 /// <p><code>KEYS_ONLY</code> - Only the index and primary keys are projected into the index.</p></li>
323 /// <li>
324 /// <p><code>INCLUDE</code> - Only the specified table attributes are projected into the index. The list of projected attributes is in <code>NonKeyAttributes</code>.</p></li>
325 /// <li>
326 /// <p><code>ALL</code> - All of the table attributes are projected into the index.</p></li>
327 /// </ul></li>
328 /// <li>
329 /// <p><code>NonKeyAttributes</code> - A list of one or more non-key attribute names that are projected into the secondary index. The total count of attributes provided in <code>NonKeyAttributes</code>, summed across all of the secondary indexes, must not exceed 100. If you project the same attribute into two different indexes, this counts as two distinct attributes when determining the total. This limit only applies when you specify the ProjectionType of <code>INCLUDE</code>. You still can specify the ProjectionType of <code>ALL</code> to project all attributes from the source table, even if the table has more than 100 attributes.</p></li>
330 /// </ul></li>
331 /// <li>
332 /// <p><code>ProvisionedThroughput</code> - The provisioned throughput settings for the global secondary index, consisting of read and write capacity units.</p></li>
333 /// </ul>
334 pub fn global_secondary_indexes(mut self, input: crate::types::GlobalSecondaryIndex) -> Self {
335 self.inner = self.inner.global_secondary_indexes(input);
336 self
337 }
338 /// <p>One or more global secondary indexes (the maximum is 20) to be created on the table. Each global secondary index in the array includes the following:</p>
339 /// <ul>
340 /// <li>
341 /// <p><code>IndexName</code> - The name of the global secondary index. Must be unique only for this table.</p>
342 /// <p></p></li>
343 /// <li>
344 /// <p><code>KeySchema</code> - Specifies the key schema for the global secondary index.</p></li>
345 /// <li>
346 /// <p><code>Projection</code> - Specifies attributes that are copied (projected) from the table into the index. These are in addition to the primary key attributes and index key attributes, which are automatically projected. Each attribute specification is composed of:</p>
347 /// <ul>
348 /// <li>
349 /// <p><code>ProjectionType</code> - One of the following:</p>
350 /// <ul>
351 /// <li>
352 /// <p><code>KEYS_ONLY</code> - Only the index and primary keys are projected into the index.</p></li>
353 /// <li>
354 /// <p><code>INCLUDE</code> - Only the specified table attributes are projected into the index. The list of projected attributes is in <code>NonKeyAttributes</code>.</p></li>
355 /// <li>
356 /// <p><code>ALL</code> - All of the table attributes are projected into the index.</p></li>
357 /// </ul></li>
358 /// <li>
359 /// <p><code>NonKeyAttributes</code> - A list of one or more non-key attribute names that are projected into the secondary index. The total count of attributes provided in <code>NonKeyAttributes</code>, summed across all of the secondary indexes, must not exceed 100. If you project the same attribute into two different indexes, this counts as two distinct attributes when determining the total. This limit only applies when you specify the ProjectionType of <code>INCLUDE</code>. You still can specify the ProjectionType of <code>ALL</code> to project all attributes from the source table, even if the table has more than 100 attributes.</p></li>
360 /// </ul></li>
361 /// <li>
362 /// <p><code>ProvisionedThroughput</code> - The provisioned throughput settings for the global secondary index, consisting of read and write capacity units.</p></li>
363 /// </ul>
364 pub fn set_global_secondary_indexes(mut self, input: ::std::option::Option<::std::vec::Vec::<crate::types::GlobalSecondaryIndex>>) -> Self {
365 self.inner = self.inner.set_global_secondary_indexes(input);
366 self
367 }
368 /// <p>One or more global secondary indexes (the maximum is 20) to be created on the table. Each global secondary index in the array includes the following:</p>
369 /// <ul>
370 /// <li>
371 /// <p><code>IndexName</code> - The name of the global secondary index. Must be unique only for this table.</p>
372 /// <p></p></li>
373 /// <li>
374 /// <p><code>KeySchema</code> - Specifies the key schema for the global secondary index.</p></li>
375 /// <li>
376 /// <p><code>Projection</code> - Specifies attributes that are copied (projected) from the table into the index. These are in addition to the primary key attributes and index key attributes, which are automatically projected. Each attribute specification is composed of:</p>
377 /// <ul>
378 /// <li>
379 /// <p><code>ProjectionType</code> - One of the following:</p>
380 /// <ul>
381 /// <li>
382 /// <p><code>KEYS_ONLY</code> - Only the index and primary keys are projected into the index.</p></li>
383 /// <li>
384 /// <p><code>INCLUDE</code> - Only the specified table attributes are projected into the index. The list of projected attributes is in <code>NonKeyAttributes</code>.</p></li>
385 /// <li>
386 /// <p><code>ALL</code> - All of the table attributes are projected into the index.</p></li>
387 /// </ul></li>
388 /// <li>
389 /// <p><code>NonKeyAttributes</code> - A list of one or more non-key attribute names that are projected into the secondary index. The total count of attributes provided in <code>NonKeyAttributes</code>, summed across all of the secondary indexes, must not exceed 100. If you project the same attribute into two different indexes, this counts as two distinct attributes when determining the total. This limit only applies when you specify the ProjectionType of <code>INCLUDE</code>. You still can specify the ProjectionType of <code>ALL</code> to project all attributes from the source table, even if the table has more than 100 attributes.</p></li>
390 /// </ul></li>
391 /// <li>
392 /// <p><code>ProvisionedThroughput</code> - The provisioned throughput settings for the global secondary index, consisting of read and write capacity units.</p></li>
393 /// </ul>
394 pub fn get_global_secondary_indexes(&self) -> &::std::option::Option<::std::vec::Vec::<crate::types::GlobalSecondaryIndex>> {
395 self.inner.get_global_secondary_indexes()
396 }
397 /// <p>Controls how you are charged for read and write throughput and how you manage capacity. This setting can be changed later.</p>
398 /// <ul>
399 /// <li>
400 /// <p><code>PAY_PER_REQUEST</code> - We recommend using <code>PAY_PER_REQUEST</code> for most DynamoDB workloads. <code>PAY_PER_REQUEST</code> sets the billing mode to <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/on-demand-capacity-mode.html">On-demand capacity mode</a>.</p></li>
401 /// <li>
402 /// <p><code>PROVISIONED</code> - We recommend using <code>PROVISIONED</code> for steady workloads with predictable growth where capacity requirements can be reliably forecasted. <code>PROVISIONED</code> sets the billing mode to <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/provisioned-capacity-mode.html">Provisioned capacity mode</a>.</p></li>
403 /// </ul>
404 pub fn billing_mode(mut self, input: crate::types::BillingMode) -> Self {
405 self.inner = self.inner.billing_mode(input);
406 self
407 }
408 /// <p>Controls how you are charged for read and write throughput and how you manage capacity. This setting can be changed later.</p>
409 /// <ul>
410 /// <li>
411 /// <p><code>PAY_PER_REQUEST</code> - We recommend using <code>PAY_PER_REQUEST</code> for most DynamoDB workloads. <code>PAY_PER_REQUEST</code> sets the billing mode to <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/on-demand-capacity-mode.html">On-demand capacity mode</a>.</p></li>
412 /// <li>
413 /// <p><code>PROVISIONED</code> - We recommend using <code>PROVISIONED</code> for steady workloads with predictable growth where capacity requirements can be reliably forecasted. <code>PROVISIONED</code> sets the billing mode to <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/provisioned-capacity-mode.html">Provisioned capacity mode</a>.</p></li>
414 /// </ul>
415 pub fn set_billing_mode(mut self, input: ::std::option::Option<crate::types::BillingMode>) -> Self {
416 self.inner = self.inner.set_billing_mode(input);
417 self
418 }
419 /// <p>Controls how you are charged for read and write throughput and how you manage capacity. This setting can be changed later.</p>
420 /// <ul>
421 /// <li>
422 /// <p><code>PAY_PER_REQUEST</code> - We recommend using <code>PAY_PER_REQUEST</code> for most DynamoDB workloads. <code>PAY_PER_REQUEST</code> sets the billing mode to <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/on-demand-capacity-mode.html">On-demand capacity mode</a>.</p></li>
423 /// <li>
424 /// <p><code>PROVISIONED</code> - We recommend using <code>PROVISIONED</code> for steady workloads with predictable growth where capacity requirements can be reliably forecasted. <code>PROVISIONED</code> sets the billing mode to <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/provisioned-capacity-mode.html">Provisioned capacity mode</a>.</p></li>
425 /// </ul>
426 pub fn get_billing_mode(&self) -> &::std::option::Option<crate::types::BillingMode> {
427 self.inner.get_billing_mode()
428 }
429 /// <p>Represents the provisioned throughput settings for a specified table or index. The settings can be modified using the <code>UpdateTable</code> operation.</p>
430 /// <p>If you set BillingMode as <code>PROVISIONED</code>, you must specify this property. If you set BillingMode as <code>PAY_PER_REQUEST</code>, you cannot specify this property.</p>
431 /// <p>For current minimum and maximum provisioned throughput values, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html">Service, Account, and Table Quotas</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
432 pub fn provisioned_throughput(mut self, input: crate::types::ProvisionedThroughput) -> Self {
433 self.inner = self.inner.provisioned_throughput(input);
434 self
435 }
436 /// <p>Represents the provisioned throughput settings for a specified table or index. The settings can be modified using the <code>UpdateTable</code> operation.</p>
437 /// <p>If you set BillingMode as <code>PROVISIONED</code>, you must specify this property. If you set BillingMode as <code>PAY_PER_REQUEST</code>, you cannot specify this property.</p>
438 /// <p>For current minimum and maximum provisioned throughput values, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html">Service, Account, and Table Quotas</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
439 pub fn set_provisioned_throughput(mut self, input: ::std::option::Option<crate::types::ProvisionedThroughput>) -> Self {
440 self.inner = self.inner.set_provisioned_throughput(input);
441 self
442 }
443 /// <p>Represents the provisioned throughput settings for a specified table or index. The settings can be modified using the <code>UpdateTable</code> operation.</p>
444 /// <p>If you set BillingMode as <code>PROVISIONED</code>, you must specify this property. If you set BillingMode as <code>PAY_PER_REQUEST</code>, you cannot specify this property.</p>
445 /// <p>For current minimum and maximum provisioned throughput values, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html">Service, Account, and Table Quotas</a> in the <i>Amazon DynamoDB Developer Guide</i>.</p>
446 pub fn get_provisioned_throughput(&self) -> &::std::option::Option<crate::types::ProvisionedThroughput> {
447 self.inner.get_provisioned_throughput()
448 }
449 /// <p>The settings for DynamoDB Streams on the table. These settings consist of:</p>
450 /// <ul>
451 /// <li>
452 /// <p><code>StreamEnabled</code> - Indicates whether DynamoDB Streams is to be enabled (true) or disabled (false).</p></li>
453 /// <li>
454 /// <p><code>StreamViewType</code> - When an item in the table is modified, <code>StreamViewType</code> determines what information is written to the table's stream. Valid values for <code>StreamViewType</code> are:</p>
455 /// <ul>
456 /// <li>
457 /// <p><code>KEYS_ONLY</code> - Only the key attributes of the modified item are written to the stream.</p></li>
458 /// <li>
459 /// <p><code>NEW_IMAGE</code> - The entire item, as it appears after it was modified, is written to the stream.</p></li>
460 /// <li>
461 /// <p><code>OLD_IMAGE</code> - The entire item, as it appeared before it was modified, is written to the stream.</p></li>
462 /// <li>
463 /// <p><code>NEW_AND_OLD_IMAGES</code> - Both the new and the old item images of the item are written to the stream.</p></li>
464 /// </ul></li>
465 /// </ul>
466 pub fn stream_specification(mut self, input: crate::types::StreamSpecification) -> Self {
467 self.inner = self.inner.stream_specification(input);
468 self
469 }
470 /// <p>The settings for DynamoDB Streams on the table. These settings consist of:</p>
471 /// <ul>
472 /// <li>
473 /// <p><code>StreamEnabled</code> - Indicates whether DynamoDB Streams is to be enabled (true) or disabled (false).</p></li>
474 /// <li>
475 /// <p><code>StreamViewType</code> - When an item in the table is modified, <code>StreamViewType</code> determines what information is written to the table's stream. Valid values for <code>StreamViewType</code> are:</p>
476 /// <ul>
477 /// <li>
478 /// <p><code>KEYS_ONLY</code> - Only the key attributes of the modified item are written to the stream.</p></li>
479 /// <li>
480 /// <p><code>NEW_IMAGE</code> - The entire item, as it appears after it was modified, is written to the stream.</p></li>
481 /// <li>
482 /// <p><code>OLD_IMAGE</code> - The entire item, as it appeared before it was modified, is written to the stream.</p></li>
483 /// <li>
484 /// <p><code>NEW_AND_OLD_IMAGES</code> - Both the new and the old item images of the item are written to the stream.</p></li>
485 /// </ul></li>
486 /// </ul>
487 pub fn set_stream_specification(mut self, input: ::std::option::Option<crate::types::StreamSpecification>) -> Self {
488 self.inner = self.inner.set_stream_specification(input);
489 self
490 }
491 /// <p>The settings for DynamoDB Streams on the table. These settings consist of:</p>
492 /// <ul>
493 /// <li>
494 /// <p><code>StreamEnabled</code> - Indicates whether DynamoDB Streams is to be enabled (true) or disabled (false).</p></li>
495 /// <li>
496 /// <p><code>StreamViewType</code> - When an item in the table is modified, <code>StreamViewType</code> determines what information is written to the table's stream. Valid values for <code>StreamViewType</code> are:</p>
497 /// <ul>
498 /// <li>
499 /// <p><code>KEYS_ONLY</code> - Only the key attributes of the modified item are written to the stream.</p></li>
500 /// <li>
501 /// <p><code>NEW_IMAGE</code> - The entire item, as it appears after it was modified, is written to the stream.</p></li>
502 /// <li>
503 /// <p><code>OLD_IMAGE</code> - The entire item, as it appeared before it was modified, is written to the stream.</p></li>
504 /// <li>
505 /// <p><code>NEW_AND_OLD_IMAGES</code> - Both the new and the old item images of the item are written to the stream.</p></li>
506 /// </ul></li>
507 /// </ul>
508 pub fn get_stream_specification(&self) -> &::std::option::Option<crate::types::StreamSpecification> {
509 self.inner.get_stream_specification()
510 }
511 /// <p>Represents the settings used to enable server-side encryption.</p>
512 pub fn sse_specification(mut self, input: crate::types::SseSpecification) -> Self {
513 self.inner = self.inner.sse_specification(input);
514 self
515 }
516 /// <p>Represents the settings used to enable server-side encryption.</p>
517 pub fn set_sse_specification(mut self, input: ::std::option::Option<crate::types::SseSpecification>) -> Self {
518 self.inner = self.inner.set_sse_specification(input);
519 self
520 }
521 /// <p>Represents the settings used to enable server-side encryption.</p>
522 pub fn get_sse_specification(&self) -> &::std::option::Option<crate::types::SseSpecification> {
523 self.inner.get_sse_specification()
524 }
525 ///
526 /// Appends an item to `Tags`.
527 ///
528 /// To override the contents of this collection use [`set_tags`](Self::set_tags).
529 ///
530 /// <p>A list of key-value pairs to label the table. For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tagging.html">Tagging for DynamoDB</a>.</p>
531 pub fn tags(mut self, input: crate::types::Tag) -> Self {
532 self.inner = self.inner.tags(input);
533 self
534 }
535 /// <p>A list of key-value pairs to label the table. For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tagging.html">Tagging for DynamoDB</a>.</p>
536 pub fn set_tags(mut self, input: ::std::option::Option<::std::vec::Vec::<crate::types::Tag>>) -> Self {
537 self.inner = self.inner.set_tags(input);
538 self
539 }
540 /// <p>A list of key-value pairs to label the table. For more information, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Tagging.html">Tagging for DynamoDB</a>.</p>
541 pub fn get_tags(&self) -> &::std::option::Option<::std::vec::Vec::<crate::types::Tag>> {
542 self.inner.get_tags()
543 }
544 /// <p>The table class of the new table. Valid values are <code>STANDARD</code> and <code>STANDARD_INFREQUENT_ACCESS</code>.</p>
545 pub fn table_class(mut self, input: crate::types::TableClass) -> Self {
546 self.inner = self.inner.table_class(input);
547 self
548 }
549 /// <p>The table class of the new table. Valid values are <code>STANDARD</code> and <code>STANDARD_INFREQUENT_ACCESS</code>.</p>
550 pub fn set_table_class(mut self, input: ::std::option::Option<crate::types::TableClass>) -> Self {
551 self.inner = self.inner.set_table_class(input);
552 self
553 }
554 /// <p>The table class of the new table. Valid values are <code>STANDARD</code> and <code>STANDARD_INFREQUENT_ACCESS</code>.</p>
555 pub fn get_table_class(&self) -> &::std::option::Option<crate::types::TableClass> {
556 self.inner.get_table_class()
557 }
558 /// <p>Indicates whether deletion protection is to be enabled (true) or disabled (false) on the table.</p>
559 pub fn deletion_protection_enabled(mut self, input: bool) -> Self {
560 self.inner = self.inner.deletion_protection_enabled(input);
561 self
562 }
563 /// <p>Indicates whether deletion protection is to be enabled (true) or disabled (false) on the table.</p>
564 pub fn set_deletion_protection_enabled(mut self, input: ::std::option::Option<bool>) -> Self {
565 self.inner = self.inner.set_deletion_protection_enabled(input);
566 self
567 }
568 /// <p>Indicates whether deletion protection is to be enabled (true) or disabled (false) on the table.</p>
569 pub fn get_deletion_protection_enabled(&self) -> &::std::option::Option<bool> {
570 self.inner.get_deletion_protection_enabled()
571 }
572 /// <p>Represents the warm throughput (in read units per second and write units per second) for creating a table.</p>
573 pub fn warm_throughput(mut self, input: crate::types::WarmThroughput) -> Self {
574 self.inner = self.inner.warm_throughput(input);
575 self
576 }
577 /// <p>Represents the warm throughput (in read units per second and write units per second) for creating a table.</p>
578 pub fn set_warm_throughput(mut self, input: ::std::option::Option<crate::types::WarmThroughput>) -> Self {
579 self.inner = self.inner.set_warm_throughput(input);
580 self
581 }
582 /// <p>Represents the warm throughput (in read units per second and write units per second) for creating a table.</p>
583 pub fn get_warm_throughput(&self) -> &::std::option::Option<crate::types::WarmThroughput> {
584 self.inner.get_warm_throughput()
585 }
586 /// <p>An Amazon Web Services resource-based policy document in JSON format that will be attached to the table.</p>
587 /// <p>When you attach a resource-based policy while creating a table, the policy application is <i>strongly consistent</i>.</p>
588 /// <p>The maximum size supported for a resource-based policy document is 20 KB. DynamoDB counts whitespaces when calculating the size of a policy against this limit. For a full list of all considerations that apply for resource-based policies, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/rbac-considerations.html">Resource-based policy considerations</a>.</p><note>
589 /// <p>You need to specify the <code>CreateTable</code> and <code>PutResourcePolicy</code> IAM actions for authorizing a user to create a table with a resource-based policy.</p>
590 /// </note>
591 pub fn resource_policy(mut self, input: impl ::std::convert::Into<::std::string::String>) -> Self {
592 self.inner = self.inner.resource_policy(input.into());
593 self
594 }
595 /// <p>An Amazon Web Services resource-based policy document in JSON format that will be attached to the table.</p>
596 /// <p>When you attach a resource-based policy while creating a table, the policy application is <i>strongly consistent</i>.</p>
597 /// <p>The maximum size supported for a resource-based policy document is 20 KB. DynamoDB counts whitespaces when calculating the size of a policy against this limit. For a full list of all considerations that apply for resource-based policies, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/rbac-considerations.html">Resource-based policy considerations</a>.</p><note>
598 /// <p>You need to specify the <code>CreateTable</code> and <code>PutResourcePolicy</code> IAM actions for authorizing a user to create a table with a resource-based policy.</p>
599 /// </note>
600 pub fn set_resource_policy(mut self, input: ::std::option::Option<::std::string::String>) -> Self {
601 self.inner = self.inner.set_resource_policy(input);
602 self
603 }
604 /// <p>An Amazon Web Services resource-based policy document in JSON format that will be attached to the table.</p>
605 /// <p>When you attach a resource-based policy while creating a table, the policy application is <i>strongly consistent</i>.</p>
606 /// <p>The maximum size supported for a resource-based policy document is 20 KB. DynamoDB counts whitespaces when calculating the size of a policy against this limit. For a full list of all considerations that apply for resource-based policies, see <a href="https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/rbac-considerations.html">Resource-based policy considerations</a>.</p><note>
607 /// <p>You need to specify the <code>CreateTable</code> and <code>PutResourcePolicy</code> IAM actions for authorizing a user to create a table with a resource-based policy.</p>
608 /// </note>
609 pub fn get_resource_policy(&self) -> &::std::option::Option<::std::string::String> {
610 self.inner.get_resource_policy()
611 }
612 /// <p>Sets the maximum number of read and write units for the specified table in on-demand capacity mode. If you use this parameter, you must specify <code>MaxReadRequestUnits</code>, <code>MaxWriteRequestUnits</code>, or both.</p>
613 pub fn on_demand_throughput(mut self, input: crate::types::OnDemandThroughput) -> Self {
614 self.inner = self.inner.on_demand_throughput(input);
615 self
616 }
617 /// <p>Sets the maximum number of read and write units for the specified table in on-demand capacity mode. If you use this parameter, you must specify <code>MaxReadRequestUnits</code>, <code>MaxWriteRequestUnits</code>, or both.</p>
618 pub fn set_on_demand_throughput(mut self, input: ::std::option::Option<crate::types::OnDemandThroughput>) -> Self {
619 self.inner = self.inner.set_on_demand_throughput(input);
620 self
621 }
622 /// <p>Sets the maximum number of read and write units for the specified table in on-demand capacity mode. If you use this parameter, you must specify <code>MaxReadRequestUnits</code>, <code>MaxWriteRequestUnits</code>, or both.</p>
623 pub fn get_on_demand_throughput(&self) -> &::std::option::Option<crate::types::OnDemandThroughput> {
624 self.inner.get_on_demand_throughput()
625 }
626}
627