1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
/*
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * SPDX-License-Identifier: Apache-2.0
 */

use aws_smithy_runtime_api::client::identity::Identity;
use bytes::{BufMut, BytesMut};
use crypto_bigint::{CheckedAdd, CheckedSub, Encoding, U256};
use once_cell::sync::Lazy;
use p256::ecdsa::signature::Signer;
use p256::ecdsa::{Signature, SigningKey};
use std::io::Write;
use std::time::SystemTime;
use zeroize::Zeroizing;

const ALGORITHM: &[u8] = b"AWS4-ECDSA-P256-SHA256";
static BIG_N_MINUS_2: Lazy<U256> = Lazy::new(|| {
    // The N value from section 3.2.1.3 of https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186.pdf
    // Used as the N value for the algorithm described in section A.2.2 of https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
    // *(Basically a prime number blessed by the NSA for use in p256)*
    const ORDER: U256 =
        U256::from_be_hex("ffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551");
    ORDER.checked_sub(&U256::from(2u32)).unwrap()
});

/// Calculates a Sigv4a signature
pub fn calculate_signature(signing_key: impl AsRef<[u8]>, string_to_sign: &[u8]) -> String {
    let signing_key = SigningKey::from_bytes(signing_key.as_ref()).unwrap();
    let signature: Signature = signing_key.sign(string_to_sign);
    // This conversion sucks but we have to do it afaict. Because we also use
    // the HMAC crate, we have to use a compatible (and therefore older) version
    // of the p256 crate. That older version requires us to convert between
    // signature types instead of using DER-encoded signatures directly.
    let signature = signature.to_der();
    hex::encode(signature.as_ref())
}

/// Generates a signing key for Sigv4a signing.
pub fn generate_signing_key(access_key: &str, secret_access_key: &str) -> impl AsRef<[u8]> {
    // Capacity is the secret access key length plus the length of "AWS4A"
    let mut input_key = Zeroizing::new(Vec::with_capacity(secret_access_key.len() + 5));
    write!(input_key, "AWS4A{secret_access_key}").unwrap();

    // Capacity is the access key length plus the counter byte
    let mut kdf_context = Zeroizing::new(Vec::with_capacity(access_key.len() + 1));
    let mut counter = Zeroizing::new(1u8);
    let key = loop {
        write!(kdf_context, "{access_key}").unwrap();
        kdf_context.push(*counter);

        let mut fis = ALGORITHM.to_vec();
        fis.push(0);
        fis.append(&mut kdf_context);
        fis.put_i32(256);

        let key = ring::hmac::Key::new(ring::hmac::HMAC_SHA256, &input_key);

        let mut buf = BytesMut::new();
        buf.put_i32(1);
        buf.put_slice(&fis);
        let tag = ring::hmac::sign(&key, &buf);
        let tag = &tag.as_ref()[0..32];

        let k0 = U256::from_be_bytes(tag.try_into().expect("convert to [u8; 32]"));

        // It would be more secure for this to be a constant time comparison, but because this
        // is for client usage, that's not as big a deal.
        if k0 <= *BIG_N_MINUS_2 {
            let pk = k0
                .checked_add(&U256::ONE)
                .expect("k0 is always less than U256::MAX");
            let d = Zeroizing::new(pk.to_be_bytes());
            break SigningKey::from_bytes(d.as_ref()).unwrap();
        }

        *counter = counter
            .checked_add(1)
            .expect("counter will never get to 255");
    };

    key.to_bytes()
}

/// Parameters to use when signing.
#[derive(Debug)]
#[non_exhaustive]
pub struct SigningParams<'a, S> {
    /// The identity to use when signing a request
    pub(crate) identity: &'a Identity,

    /// Region set to sign for.
    pub(crate) region_set: &'a str,
    /// Service Name to sign for.
    ///
    /// NOTE: Endpoint resolution rules may specify a name that differs from the typical service name.
    pub(crate) name: &'a str,
    /// Timestamp to use in the signature (should be `SystemTime::now()` unless testing).
    pub(crate) time: SystemTime,

    /// Additional signing settings. These differ between HTTP and Event Stream.
    pub(crate) settings: S,
}

pub(crate) const ECDSA_256: &str = "AWS4-ECDSA-P256-SHA256";

impl<'a, S> SigningParams<'a, S> {
    /// Returns the region that will be used to sign SigV4a requests
    pub fn region_set(&self) -> &str {
        self.region_set
    }

    /// Returns the service name that will be used to sign requests
    pub fn name(&self) -> &str {
        self.name
    }

    /// Return the name of the algorithm used to sign requests
    pub fn algorithm(&self) -> &'static str {
        ECDSA_256
    }
}

impl<'a, S: Default> SigningParams<'a, S> {
    /// Returns a builder that can create new `SigningParams`.
    pub fn builder() -> signing_params::Builder<'a, S> {
        Default::default()
    }
}

/// Builder and error for creating [`SigningParams`]
pub mod signing_params {
    use super::SigningParams;
    use aws_smithy_runtime_api::client::identity::Identity;
    use std::error::Error;
    use std::fmt;
    use std::time::SystemTime;

    /// [`SigningParams`] builder error
    #[derive(Debug)]
    pub struct BuildError {
        reason: &'static str,
    }
    impl BuildError {
        fn new(reason: &'static str) -> Self {
            Self { reason }
        }
    }

    impl fmt::Display for BuildError {
        fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
            write!(f, "{}", self.reason)
        }
    }

    impl Error for BuildError {}

    /// Builder that can create new [`SigningParams`]
    #[derive(Debug, Default)]
    pub struct Builder<'a, S> {
        identity: Option<&'a Identity>,
        region_set: Option<&'a str>,
        name: Option<&'a str>,
        time: Option<SystemTime>,
        settings: Option<S>,
    }

    impl<'a, S> Builder<'a, S> {
        builder_methods!(
            set_identity,
            identity,
            &'a Identity,
            "Sets the identity (required)",
            set_region_set,
            region_set,
            &'a str,
            "Sets the region set (required)",
            set_name,
            name,
            &'a str,
            "Sets the name (required)",
            set_time,
            time,
            SystemTime,
            "Sets the time to be used in the signature (required)",
            set_settings,
            settings,
            S,
            "Sets additional signing settings (required)"
        );

        /// Builds an instance of [`SigningParams`]. Will yield a [`BuildError`] if
        /// a required argument was not given.
        pub fn build(self) -> Result<SigningParams<'a, S>, BuildError> {
            Ok(SigningParams {
                identity: self
                    .identity
                    .ok_or_else(|| BuildError::new("identity is required"))?,
                region_set: self
                    .region_set
                    .ok_or_else(|| BuildError::new("region_set is required"))?,
                name: self
                    .name
                    .ok_or_else(|| BuildError::new("name is required"))?,
                time: self
                    .time
                    .ok_or_else(|| BuildError::new("time is required"))?,
                settings: self
                    .settings
                    .ok_or_else(|| BuildError::new("settings are required"))?,
            })
        }
    }
}