#[non_exhaustive]
pub struct DeleteItemInput { pub table_name: Option<String>, pub key: Option<HashMap<String, AttributeValue>>, pub expected: Option<HashMap<String, ExpectedAttributeValue>>, pub conditional_operator: Option<ConditionalOperator>, pub return_values: Option<ReturnValue>, pub return_consumed_capacity: Option<ReturnConsumedCapacity>, pub return_item_collection_metrics: Option<ReturnItemCollectionMetrics>, pub condition_expression: Option<String>, pub expression_attribute_names: Option<HashMap<String, String>>, pub expression_attribute_values: Option<HashMap<String, AttributeValue>>, pub return_values_on_condition_check_failure: Option<ReturnValuesOnConditionCheckFailure>, }
Expand description

Represents the input of a DeleteItem operation.

Fields (Non-exhaustive)§

This struct is marked as non-exhaustive
Non-exhaustive structs could have additional fields added in future. Therefore, non-exhaustive structs cannot be constructed in external crates using the traditional Struct { .. } syntax; cannot be matched against without a wildcard ..; and struct update syntax will not work.
§table_name: Option<String>

The name of the table from which to delete the item. You can also provide the Amazon Resource Name (ARN) of the table in this parameter.

§key: Option<HashMap<String, AttributeValue>>

A map of attribute names to AttributeValue objects, representing the primary key of the item to delete.

For the primary key, you must provide all of the key attributes. For example, with a simple primary key, you only need to provide a value for the partition key. For a composite primary key, you must provide values for both the partition key and the sort key.

§expected: Option<HashMap<String, ExpectedAttributeValue>>

This is a legacy parameter. Use ConditionExpression instead. For more information, see Expected in the Amazon DynamoDB Developer Guide.

§conditional_operator: Option<ConditionalOperator>

This is a legacy parameter. Use ConditionExpression instead. For more information, see ConditionalOperator in the Amazon DynamoDB Developer Guide.

§return_values: Option<ReturnValue>

Use ReturnValues if you want to get the item attributes as they appeared before they were deleted. For DeleteItem, the valid values are:

  • NONE - If ReturnValues is not specified, or if its value is NONE, then nothing is returned. (This setting is the default for ReturnValues.)

  • ALL_OLD - The content of the old item is returned.

There is no additional cost associated with requesting a return value aside from the small network and processing overhead of receiving a larger response. No read capacity units are consumed.

The ReturnValues parameter is used by several DynamoDB operations; however, DeleteItem does not recognize any values other than NONE or ALL_OLD.

§return_consumed_capacity: Option<ReturnConsumedCapacity>

Determines the level of detail about either provisioned or on-demand throughput consumption that is returned in the response:

  • INDEXES - The response includes the aggregate ConsumedCapacity for the operation, together with ConsumedCapacity for each table and secondary index that was accessed.

    Note that some operations, such as GetItem and BatchGetItem, do not access any indexes at all. In these cases, specifying INDEXES will only return ConsumedCapacity information for table(s).

  • TOTAL - The response includes only the aggregate ConsumedCapacity for the operation.

  • NONE - No ConsumedCapacity details are included in the response.

§return_item_collection_metrics: Option<ReturnItemCollectionMetrics>

Determines whether item collection metrics are returned. If set to SIZE, the response includes statistics about item collections, if any, that were modified during the operation are returned in the response. If set to NONE (the default), no statistics are returned.

§condition_expression: Option<String>

A condition that must be satisfied in order for a conditional DeleteItem to succeed.

An expression can contain any of the following:

  • Functions: attribute_exists | attribute_not_exists | attribute_type | contains | begins_with | size

    These function names are case-sensitive.

  • Comparison operators: = | <> | < | > | <= | >= | BETWEEN | IN

  • Logical operators: AND | OR | NOT

For more information about condition expressions, see Condition Expressions in the Amazon DynamoDB Developer Guide.

§expression_attribute_names: Option<HashMap<String, String>>

One or more substitution tokens for attribute names in an expression. The following are some use cases for using ExpressionAttributeNames:

  • To access an attribute whose name conflicts with a DynamoDB reserved word.

  • To create a placeholder for repeating occurrences of an attribute name in an expression.

  • To prevent special characters in an attribute name from being misinterpreted in an expression.

Use the # character in an expression to dereference an attribute name. For example, consider the following attribute name:

  • Percentile

The name of this attribute conflicts with a reserved word, so it cannot be used directly in an expression. (For the complete list of reserved words, see Reserved Words in the Amazon DynamoDB Developer Guide). To work around this, you could specify the following for ExpressionAttributeNames:

  • {"#P":"Percentile"}

You could then use this substitution in an expression, as in this example:

  • #P = :val

Tokens that begin with the : character are expression attribute values, which are placeholders for the actual value at runtime.

For more information on expression attribute names, see Specifying Item Attributes in the Amazon DynamoDB Developer Guide.

§expression_attribute_values: Option<HashMap<String, AttributeValue>>

One or more values that can be substituted in an expression.

Use the : (colon) character in an expression to dereference an attribute value. For example, suppose that you wanted to check whether the value of the ProductStatus attribute was one of the following:

Available | Backordered | Discontinued

You would first need to specify ExpressionAttributeValues as follows:

{ ":avail":{"S":"Available"}, ":back":{"S":"Backordered"}, ":disc":{"S":"Discontinued"} }

You could then use these values in an expression, such as this:

ProductStatus IN (:avail, :back, :disc)

For more information on expression attribute values, see Condition Expressions in the Amazon DynamoDB Developer Guide.

§return_values_on_condition_check_failure: Option<ReturnValuesOnConditionCheckFailure>

An optional parameter that returns the item attributes for a DeleteItem operation that failed a condition check.

There is no additional cost associated with requesting a return value aside from the small network and processing overhead of receiving a larger response. No read capacity units are consumed.

Implementations§

source§

impl DeleteItemInput

source

pub fn table_name(&self) -> Option<&str>

The name of the table from which to delete the item. You can also provide the Amazon Resource Name (ARN) of the table in this parameter.

source

pub fn key(&self) -> Option<&HashMap<String, AttributeValue>>

A map of attribute names to AttributeValue objects, representing the primary key of the item to delete.

For the primary key, you must provide all of the key attributes. For example, with a simple primary key, you only need to provide a value for the partition key. For a composite primary key, you must provide values for both the partition key and the sort key.

source

pub fn expected(&self) -> Option<&HashMap<String, ExpectedAttributeValue>>

This is a legacy parameter. Use ConditionExpression instead. For more information, see Expected in the Amazon DynamoDB Developer Guide.

source

pub fn conditional_operator(&self) -> Option<&ConditionalOperator>

This is a legacy parameter. Use ConditionExpression instead. For more information, see ConditionalOperator in the Amazon DynamoDB Developer Guide.

source

pub fn return_values(&self) -> Option<&ReturnValue>

Use ReturnValues if you want to get the item attributes as they appeared before they were deleted. For DeleteItem, the valid values are:

  • NONE - If ReturnValues is not specified, or if its value is NONE, then nothing is returned. (This setting is the default for ReturnValues.)

  • ALL_OLD - The content of the old item is returned.

There is no additional cost associated with requesting a return value aside from the small network and processing overhead of receiving a larger response. No read capacity units are consumed.

The ReturnValues parameter is used by several DynamoDB operations; however, DeleteItem does not recognize any values other than NONE or ALL_OLD.

source

pub fn return_consumed_capacity(&self) -> Option<&ReturnConsumedCapacity>

Determines the level of detail about either provisioned or on-demand throughput consumption that is returned in the response:

  • INDEXES - The response includes the aggregate ConsumedCapacity for the operation, together with ConsumedCapacity for each table and secondary index that was accessed.

    Note that some operations, such as GetItem and BatchGetItem, do not access any indexes at all. In these cases, specifying INDEXES will only return ConsumedCapacity information for table(s).

  • TOTAL - The response includes only the aggregate ConsumedCapacity for the operation.

  • NONE - No ConsumedCapacity details are included in the response.

source

pub fn return_item_collection_metrics( &self, ) -> Option<&ReturnItemCollectionMetrics>

Determines whether item collection metrics are returned. If set to SIZE, the response includes statistics about item collections, if any, that were modified during the operation are returned in the response. If set to NONE (the default), no statistics are returned.

source

pub fn condition_expression(&self) -> Option<&str>

A condition that must be satisfied in order for a conditional DeleteItem to succeed.

An expression can contain any of the following:

  • Functions: attribute_exists | attribute_not_exists | attribute_type | contains | begins_with | size

    These function names are case-sensitive.

  • Comparison operators: = | <> | < | > | <= | >= | BETWEEN | IN

  • Logical operators: AND | OR | NOT

For more information about condition expressions, see Condition Expressions in the Amazon DynamoDB Developer Guide.

source

pub fn expression_attribute_names(&self) -> Option<&HashMap<String, String>>

One or more substitution tokens for attribute names in an expression. The following are some use cases for using ExpressionAttributeNames:

  • To access an attribute whose name conflicts with a DynamoDB reserved word.

  • To create a placeholder for repeating occurrences of an attribute name in an expression.

  • To prevent special characters in an attribute name from being misinterpreted in an expression.

Use the # character in an expression to dereference an attribute name. For example, consider the following attribute name:

  • Percentile

The name of this attribute conflicts with a reserved word, so it cannot be used directly in an expression. (For the complete list of reserved words, see Reserved Words in the Amazon DynamoDB Developer Guide). To work around this, you could specify the following for ExpressionAttributeNames:

  • {"#P":"Percentile"}

You could then use this substitution in an expression, as in this example:

  • #P = :val

Tokens that begin with the : character are expression attribute values, which are placeholders for the actual value at runtime.

For more information on expression attribute names, see Specifying Item Attributes in the Amazon DynamoDB Developer Guide.

source

pub fn expression_attribute_values( &self, ) -> Option<&HashMap<String, AttributeValue>>

One or more values that can be substituted in an expression.

Use the : (colon) character in an expression to dereference an attribute value. For example, suppose that you wanted to check whether the value of the ProductStatus attribute was one of the following:

Available | Backordered | Discontinued

You would first need to specify ExpressionAttributeValues as follows:

{ ":avail":{"S":"Available"}, ":back":{"S":"Backordered"}, ":disc":{"S":"Discontinued"} }

You could then use these values in an expression, such as this:

ProductStatus IN (:avail, :back, :disc)

For more information on expression attribute values, see Condition Expressions in the Amazon DynamoDB Developer Guide.

source

pub fn return_values_on_condition_check_failure( &self, ) -> Option<&ReturnValuesOnConditionCheckFailure>

An optional parameter that returns the item attributes for a DeleteItem operation that failed a condition check.

There is no additional cost associated with requesting a return value aside from the small network and processing overhead of receiving a larger response. No read capacity units are consumed.

source§

impl DeleteItemInput

source

pub fn builder() -> DeleteItemInputBuilder

Creates a new builder-style object to manufacture DeleteItemInput.

Trait Implementations§

source§

impl Clone for DeleteItemInput

source§

fn clone(&self) -> DeleteItemInput

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for DeleteItemInput

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl PartialEq for DeleteItemInput

source§

fn eq(&self, other: &DeleteItemInput) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl StructuralPartialEq for DeleteItemInput

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> CloneToUninit for T
where T: Clone,

source§

default unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoEither for T

source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
§

impl<T> Paint for T
where T: ?Sized,

§

fn fg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the foreground set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like red() and green(), which have the same functionality but are pithier.

§Example

Set foreground color to white using fg():

use yansi::{Paint, Color};

painted.fg(Color::White);

Set foreground color to white using white().

use yansi::Paint;

painted.white();
§

fn primary(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Primary].

§Example
println!("{}", value.primary());
§

fn fixed(&self, color: u8) -> Painted<&T>

Returns self with the fg() set to [Color::Fixed].

§Example
println!("{}", value.fixed(color));
§

fn rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the fg() set to [Color::Rgb].

§Example
println!("{}", value.rgb(r, g, b));
§

fn black(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Black].

§Example
println!("{}", value.black());
§

fn red(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Red].

§Example
println!("{}", value.red());
§

fn green(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Green].

§Example
println!("{}", value.green());
§

fn yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Yellow].

§Example
println!("{}", value.yellow());
§

fn blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Blue].

§Example
println!("{}", value.blue());
§

fn magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Magenta].

§Example
println!("{}", value.magenta());
§

fn cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Cyan].

§Example
println!("{}", value.cyan());
§

fn white(&self) -> Painted<&T>

Returns self with the fg() set to [Color::White].

§Example
println!("{}", value.white());
§

fn bright_black(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightBlack].

§Example
println!("{}", value.bright_black());
§

fn bright_red(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightRed].

§Example
println!("{}", value.bright_red());
§

fn bright_green(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightGreen].

§Example
println!("{}", value.bright_green());
§

fn bright_yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightYellow].

§Example
println!("{}", value.bright_yellow());
§

fn bright_blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightBlue].

§Example
println!("{}", value.bright_blue());
§

fn bright_magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightMagenta].

§Example
println!("{}", value.bright_magenta());
§

fn bright_cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightCyan].

§Example
println!("{}", value.bright_cyan());
§

fn bright_white(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightWhite].

§Example
println!("{}", value.bright_white());
§

fn bg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the background set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like on_red() and on_green(), which have the same functionality but are pithier.

§Example

Set background color to red using fg():

use yansi::{Paint, Color};

painted.bg(Color::Red);

Set background color to red using on_red().

use yansi::Paint;

painted.on_red();
§

fn on_primary(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Primary].

§Example
println!("{}", value.on_primary());
§

fn on_fixed(&self, color: u8) -> Painted<&T>

Returns self with the bg() set to [Color::Fixed].

§Example
println!("{}", value.on_fixed(color));
§

fn on_rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the bg() set to [Color::Rgb].

§Example
println!("{}", value.on_rgb(r, g, b));
§

fn on_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Black].

§Example
println!("{}", value.on_black());
§

fn on_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Red].

§Example
println!("{}", value.on_red());
§

fn on_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Green].

§Example
println!("{}", value.on_green());
§

fn on_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Yellow].

§Example
println!("{}", value.on_yellow());
§

fn on_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Blue].

§Example
println!("{}", value.on_blue());
§

fn on_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Magenta].

§Example
println!("{}", value.on_magenta());
§

fn on_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Cyan].

§Example
println!("{}", value.on_cyan());
§

fn on_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color::White].

§Example
println!("{}", value.on_white());
§

fn on_bright_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightBlack].

§Example
println!("{}", value.on_bright_black());
§

fn on_bright_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightRed].

§Example
println!("{}", value.on_bright_red());
§

fn on_bright_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightGreen].

§Example
println!("{}", value.on_bright_green());
§

fn on_bright_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightYellow].

§Example
println!("{}", value.on_bright_yellow());
§

fn on_bright_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightBlue].

§Example
println!("{}", value.on_bright_blue());
§

fn on_bright_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightMagenta].

§Example
println!("{}", value.on_bright_magenta());
§

fn on_bright_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightCyan].

§Example
println!("{}", value.on_bright_cyan());
§

fn on_bright_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightWhite].

§Example
println!("{}", value.on_bright_white());
§

fn attr(&self, value: Attribute) -> Painted<&T>

Enables the styling [Attribute] value.

This method should be used rarely. Instead, prefer to use attribute-specific builder methods like bold() and underline(), which have the same functionality but are pithier.

§Example

Make text bold using attr():

use yansi::{Paint, Attribute};

painted.attr(Attribute::Bold);

Make text bold using using bold().

use yansi::Paint;

painted.bold();
§

fn bold(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Bold].

§Example
println!("{}", value.bold());
§

fn dim(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Dim].

§Example
println!("{}", value.dim());
§

fn italic(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Italic].

§Example
println!("{}", value.italic());
§

fn underline(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Underline].

§Example
println!("{}", value.underline());

Returns self with the attr() set to [Attribute::Blink].

§Example
println!("{}", value.blink());

Returns self with the attr() set to [Attribute::RapidBlink].

§Example
println!("{}", value.rapid_blink());
§

fn invert(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Invert].

§Example
println!("{}", value.invert());
§

fn conceal(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Conceal].

§Example
println!("{}", value.conceal());
§

fn strike(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Strike].

§Example
println!("{}", value.strike());
§

fn quirk(&self, value: Quirk) -> Painted<&T>

Enables the yansi [Quirk] value.

This method should be used rarely. Instead, prefer to use quirk-specific builder methods like mask() and wrap(), which have the same functionality but are pithier.

§Example

Enable wrapping using .quirk():

use yansi::{Paint, Quirk};

painted.quirk(Quirk::Wrap);

Enable wrapping using wrap().

use yansi::Paint;

painted.wrap();
§

fn mask(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::Mask].

§Example
println!("{}", value.mask());
§

fn wrap(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::Wrap].

§Example
println!("{}", value.wrap());
§

fn linger(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::Linger].

§Example
println!("{}", value.linger());
§

fn clear(&self) -> Painted<&T>

👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear(). The clear() method will be removed in a future release.

Returns self with the quirk() set to [Quirk::Clear].

§Example
println!("{}", value.clear());
§

fn resetting(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::Resetting].

§Example
println!("{}", value.resetting());
§

fn bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::Bright].

§Example
println!("{}", value.bright());
§

fn on_bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::OnBright].

§Example
println!("{}", value.on_bright());
§

fn whenever(&self, value: Condition) -> Painted<&T>

Conditionally enable styling based on whether the [Condition] value applies. Replaces any previous condition.

See the crate level docs for more details.

§Example

Enable styling painted only when both stdout and stderr are TTYs:

use yansi::{Paint, Condition};

painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);
§

fn new(self) -> Painted<Self>
where Self: Sized,

Create a new [Painted] with a default [Style]. Read more
§

fn paint<S>(&self, style: S) -> Painted<&Self>
where S: Into<Style>,

Apply a style wholesale to self. Any previous style is replaced. Read more
source§

impl<T> Same for T

§

type Output = T

Should always be Self
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more