Struct aws_sdk_dynamodb::types::AttributeValueUpdate

source ·
#[non_exhaustive]
pub struct AttributeValueUpdate { pub value: Option<AttributeValue>, pub action: Option<AttributeAction>, }
Expand description

For the UpdateItem operation, represents the attributes to be modified, the action to perform on each, and the new value for each.

You cannot use UpdateItem to update any primary key attributes. Instead, you will need to delete the item, and then use PutItem to create a new item with new attributes.

Attribute values cannot be null; string and binary type attributes must have lengths greater than zero; and set type attributes must not be empty. Requests with empty values will be rejected with a ValidationException exception.

Fields (Non-exhaustive)§

This struct is marked as non-exhaustive
Non-exhaustive structs could have additional fields added in future. Therefore, non-exhaustive structs cannot be constructed in external crates using the traditional Struct { .. } syntax; cannot be matched against without a wildcard ..; and struct update syntax will not work.
§value: Option<AttributeValue>

Represents the data for an attribute.

Each attribute value is described as a name-value pair. The name is the data type, and the value is the data itself.

For more information, see Data Types in the Amazon DynamoDB Developer Guide.

§action: Option<AttributeAction>

Specifies how to perform the update. Valid values are PUT (default), DELETE, and ADD. The behavior depends on whether the specified primary key already exists in the table.

If an item with the specified Key is found in the table:

  • PUT - Adds the specified attribute to the item. If the attribute already exists, it is replaced by the new value.

  • DELETE - If no value is specified, the attribute and its value are removed from the item. The data type of the specified value must match the existing value's data type.

    If a set of values is specified, then those values are subtracted from the old set. For example, if the attribute value was the set \[a,b,c\] and the DELETE action specified \[a,c\], then the final attribute value would be \[b\]. Specifying an empty set is an error.

  • ADD - If the attribute does not already exist, then the attribute and its values are added to the item. If the attribute does exist, then the behavior of ADD depends on the data type of the attribute:

    • If the existing attribute is a number, and if Value is also a number, then the Value is mathematically added to the existing attribute. If Value is a negative number, then it is subtracted from the existing attribute.

      If you use ADD to increment or decrement a number value for an item that doesn't exist before the update, DynamoDB uses 0 as the initial value.

      In addition, if you use ADD to update an existing item, and intend to increment or decrement an attribute value which does not yet exist, DynamoDB uses 0 as the initial value. For example, suppose that the item you want to update does not yet have an attribute named itemcount, but you decide to ADD the number 3 to this attribute anyway, even though it currently does not exist. DynamoDB will create the itemcount attribute, set its initial value to 0, and finally add 3 to it. The result will be a new itemcount attribute in the item, with a value of 3.

    • If the existing data type is a set, and if the Value is also a set, then the Value is added to the existing set. (This is a set operation, not mathematical addition.) For example, if the attribute value was the set \[1,2\], and the ADD action specified \[3\], then the final attribute value would be \[1,2,3\]. An error occurs if an Add action is specified for a set attribute and the attribute type specified does not match the existing set type.

      Both sets must have the same primitive data type. For example, if the existing data type is a set of strings, the Value must also be a set of strings. The same holds true for number sets and binary sets.

    This action is only valid for an existing attribute whose data type is number or is a set. Do not use ADD for any other data types.

If no item with the specified Key is found:

  • PUT - DynamoDB creates a new item with the specified primary key, and then adds the attribute.

  • DELETE - Nothing happens; there is no attribute to delete.

  • ADD - DynamoDB creates a new item with the supplied primary key and number (or set) for the attribute value. The only data types allowed are number, number set, string set or binary set.

Implementations§

source§

impl AttributeValueUpdate

source

pub fn value(&self) -> Option<&AttributeValue>

Represents the data for an attribute.

Each attribute value is described as a name-value pair. The name is the data type, and the value is the data itself.

For more information, see Data Types in the Amazon DynamoDB Developer Guide.

source

pub fn action(&self) -> Option<&AttributeAction>

Specifies how to perform the update. Valid values are PUT (default), DELETE, and ADD. The behavior depends on whether the specified primary key already exists in the table.

If an item with the specified Key is found in the table:

  • PUT - Adds the specified attribute to the item. If the attribute already exists, it is replaced by the new value.

  • DELETE - If no value is specified, the attribute and its value are removed from the item. The data type of the specified value must match the existing value's data type.

    If a set of values is specified, then those values are subtracted from the old set. For example, if the attribute value was the set \[a,b,c\] and the DELETE action specified \[a,c\], then the final attribute value would be \[b\]. Specifying an empty set is an error.

  • ADD - If the attribute does not already exist, then the attribute and its values are added to the item. If the attribute does exist, then the behavior of ADD depends on the data type of the attribute:

    • If the existing attribute is a number, and if Value is also a number, then the Value is mathematically added to the existing attribute. If Value is a negative number, then it is subtracted from the existing attribute.

      If you use ADD to increment or decrement a number value for an item that doesn't exist before the update, DynamoDB uses 0 as the initial value.

      In addition, if you use ADD to update an existing item, and intend to increment or decrement an attribute value which does not yet exist, DynamoDB uses 0 as the initial value. For example, suppose that the item you want to update does not yet have an attribute named itemcount, but you decide to ADD the number 3 to this attribute anyway, even though it currently does not exist. DynamoDB will create the itemcount attribute, set its initial value to 0, and finally add 3 to it. The result will be a new itemcount attribute in the item, with a value of 3.

    • If the existing data type is a set, and if the Value is also a set, then the Value is added to the existing set. (This is a set operation, not mathematical addition.) For example, if the attribute value was the set \[1,2\], and the ADD action specified \[3\], then the final attribute value would be \[1,2,3\]. An error occurs if an Add action is specified for a set attribute and the attribute type specified does not match the existing set type.

      Both sets must have the same primitive data type. For example, if the existing data type is a set of strings, the Value must also be a set of strings. The same holds true for number sets and binary sets.

    This action is only valid for an existing attribute whose data type is number or is a set. Do not use ADD for any other data types.

If no item with the specified Key is found:

  • PUT - DynamoDB creates a new item with the specified primary key, and then adds the attribute.

  • DELETE - Nothing happens; there is no attribute to delete.

  • ADD - DynamoDB creates a new item with the supplied primary key and number (or set) for the attribute value. The only data types allowed are number, number set, string set or binary set.

source§

impl AttributeValueUpdate

source

pub fn builder() -> AttributeValueUpdateBuilder

Creates a new builder-style object to manufacture AttributeValueUpdate.

Trait Implementations§

source§

impl Clone for AttributeValueUpdate

source§

fn clone(&self) -> AttributeValueUpdate

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for AttributeValueUpdate

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl PartialEq for AttributeValueUpdate

source§

fn eq(&self, other: &AttributeValueUpdate) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl StructuralPartialEq for AttributeValueUpdate

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> CloneToUninit for T
where T: Clone,

source§

default unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoEither for T

source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
§

impl<T> Paint for T
where T: ?Sized,

§

fn fg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the foreground set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like red() and green(), which have the same functionality but are pithier.

§Example

Set foreground color to white using fg():

use yansi::{Paint, Color};

painted.fg(Color::White);

Set foreground color to white using white().

use yansi::Paint;

painted.white();
§

fn primary(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Primary].

§Example
println!("{}", value.primary());
§

fn fixed(&self, color: u8) -> Painted<&T>

Returns self with the fg() set to [Color::Fixed].

§Example
println!("{}", value.fixed(color));
§

fn rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the fg() set to [Color::Rgb].

§Example
println!("{}", value.rgb(r, g, b));
§

fn black(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Black].

§Example
println!("{}", value.black());
§

fn red(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Red].

§Example
println!("{}", value.red());
§

fn green(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Green].

§Example
println!("{}", value.green());
§

fn yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Yellow].

§Example
println!("{}", value.yellow());
§

fn blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Blue].

§Example
println!("{}", value.blue());
§

fn magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Magenta].

§Example
println!("{}", value.magenta());
§

fn cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color::Cyan].

§Example
println!("{}", value.cyan());
§

fn white(&self) -> Painted<&T>

Returns self with the fg() set to [Color::White].

§Example
println!("{}", value.white());
§

fn bright_black(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightBlack].

§Example
println!("{}", value.bright_black());
§

fn bright_red(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightRed].

§Example
println!("{}", value.bright_red());
§

fn bright_green(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightGreen].

§Example
println!("{}", value.bright_green());
§

fn bright_yellow(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightYellow].

§Example
println!("{}", value.bright_yellow());
§

fn bright_blue(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightBlue].

§Example
println!("{}", value.bright_blue());
§

fn bright_magenta(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightMagenta].

§Example
println!("{}", value.bright_magenta());
§

fn bright_cyan(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightCyan].

§Example
println!("{}", value.bright_cyan());
§

fn bright_white(&self) -> Painted<&T>

Returns self with the fg() set to [Color::BrightWhite].

§Example
println!("{}", value.bright_white());
§

fn bg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the background set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like on_red() and on_green(), which have the same functionality but are pithier.

§Example

Set background color to red using fg():

use yansi::{Paint, Color};

painted.bg(Color::Red);

Set background color to red using on_red().

use yansi::Paint;

painted.on_red();
§

fn on_primary(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Primary].

§Example
println!("{}", value.on_primary());
§

fn on_fixed(&self, color: u8) -> Painted<&T>

Returns self with the bg() set to [Color::Fixed].

§Example
println!("{}", value.on_fixed(color));
§

fn on_rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the bg() set to [Color::Rgb].

§Example
println!("{}", value.on_rgb(r, g, b));
§

fn on_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Black].

§Example
println!("{}", value.on_black());
§

fn on_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Red].

§Example
println!("{}", value.on_red());
§

fn on_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Green].

§Example
println!("{}", value.on_green());
§

fn on_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Yellow].

§Example
println!("{}", value.on_yellow());
§

fn on_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Blue].

§Example
println!("{}", value.on_blue());
§

fn on_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Magenta].

§Example
println!("{}", value.on_magenta());
§

fn on_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color::Cyan].

§Example
println!("{}", value.on_cyan());
§

fn on_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color::White].

§Example
println!("{}", value.on_white());
§

fn on_bright_black(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightBlack].

§Example
println!("{}", value.on_bright_black());
§

fn on_bright_red(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightRed].

§Example
println!("{}", value.on_bright_red());
§

fn on_bright_green(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightGreen].

§Example
println!("{}", value.on_bright_green());
§

fn on_bright_yellow(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightYellow].

§Example
println!("{}", value.on_bright_yellow());
§

fn on_bright_blue(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightBlue].

§Example
println!("{}", value.on_bright_blue());
§

fn on_bright_magenta(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightMagenta].

§Example
println!("{}", value.on_bright_magenta());
§

fn on_bright_cyan(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightCyan].

§Example
println!("{}", value.on_bright_cyan());
§

fn on_bright_white(&self) -> Painted<&T>

Returns self with the bg() set to [Color::BrightWhite].

§Example
println!("{}", value.on_bright_white());
§

fn attr(&self, value: Attribute) -> Painted<&T>

Enables the styling [Attribute] value.

This method should be used rarely. Instead, prefer to use attribute-specific builder methods like bold() and underline(), which have the same functionality but are pithier.

§Example

Make text bold using attr():

use yansi::{Paint, Attribute};

painted.attr(Attribute::Bold);

Make text bold using using bold().

use yansi::Paint;

painted.bold();
§

fn bold(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Bold].

§Example
println!("{}", value.bold());
§

fn dim(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Dim].

§Example
println!("{}", value.dim());
§

fn italic(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Italic].

§Example
println!("{}", value.italic());
§

fn underline(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Underline].

§Example
println!("{}", value.underline());

Returns self with the attr() set to [Attribute::Blink].

§Example
println!("{}", value.blink());

Returns self with the attr() set to [Attribute::RapidBlink].

§Example
println!("{}", value.rapid_blink());
§

fn invert(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Invert].

§Example
println!("{}", value.invert());
§

fn conceal(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Conceal].

§Example
println!("{}", value.conceal());
§

fn strike(&self) -> Painted<&T>

Returns self with the attr() set to [Attribute::Strike].

§Example
println!("{}", value.strike());
§

fn quirk(&self, value: Quirk) -> Painted<&T>

Enables the yansi [Quirk] value.

This method should be used rarely. Instead, prefer to use quirk-specific builder methods like mask() and wrap(), which have the same functionality but are pithier.

§Example

Enable wrapping using .quirk():

use yansi::{Paint, Quirk};

painted.quirk(Quirk::Wrap);

Enable wrapping using wrap().

use yansi::Paint;

painted.wrap();
§

fn mask(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::Mask].

§Example
println!("{}", value.mask());
§

fn wrap(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::Wrap].

§Example
println!("{}", value.wrap());
§

fn linger(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::Linger].

§Example
println!("{}", value.linger());
§

fn clear(&self) -> Painted<&T>

👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear(). The clear() method will be removed in a future release.

Returns self with the quirk() set to [Quirk::Clear].

§Example
println!("{}", value.clear());
§

fn resetting(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::Resetting].

§Example
println!("{}", value.resetting());
§

fn bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::Bright].

§Example
println!("{}", value.bright());
§

fn on_bright(&self) -> Painted<&T>

Returns self with the quirk() set to [Quirk::OnBright].

§Example
println!("{}", value.on_bright());
§

fn whenever(&self, value: Condition) -> Painted<&T>

Conditionally enable styling based on whether the [Condition] value applies. Replaces any previous condition.

See the crate level docs for more details.

§Example

Enable styling painted only when both stdout and stderr are TTYs:

use yansi::{Paint, Condition};

painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);
§

fn new(self) -> Painted<Self>
where Self: Sized,

Create a new [Painted] with a default [Style]. Read more
§

fn paint<S>(&self, style: S) -> Painted<&Self>
where S: Into<Style>,

Apply a style wholesale to self. Any previous style is replaced. Read more
source§

impl<T> Same for T

§

type Output = T

Should always be Self
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more